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Abstract— Autonomous mobile robot localisation, planning,
and navigation methods typically rely on environmental rep-
resentations. Previous research has shown that the temporal
dynamics captured by specialized models help autonomous
robots to operate for longer periods with better efficiency. One
of the leading approaches uses maps enhanced by frequency
analysis to model and predict repeating cycles of activity in
the environment. However, this approach implicitly relies on
prior knowledge of the expected periodicities, such as days
and weeks, encoded by the human designers of the system.
This paper presents a new method to automatically search
the robot’s observations for dominant frequencies, leading
to a more general method than the previous approach for
frequency map enhancement. The proposed algorithm extends
the problem definition from binary observations also to real-
valued time series, making it applicable to a broader spectrum
of robotic tasks. We show that the new method can be imple-
mented in robotic systems operating without prior knowledge
of the underlying processes that influence the dynamics of the
working environment across a wide variety of tasks similar
to the long-standing state-of-the-art. We hypothesise that an
autonomous robot using the proposed improvement can be
deployed to unprecedented environments.

Keywords: long-term autonomy, spectral decomposition,
spatio-temporal modelling

I. INTRODUCTION

The rise of autonomous mobile robotics comes together
with the development of their ability to understand the
surrounding world. More recent work has shown that the
maps and models representing the environment benefit from
the inclusion of temporal dynamics and the capability of
these models to predict future environment states. This
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has brought questions of how to best explore, capture,
represent, and exploit dynamics, suppress negligible trends,
and discover periodic patterns and rare cyclical events. The
topic is complicated by the fact that, while these robots
are autonomous, they are operating in the real world and,
therefore, are subject to real-world technical limitations.
For example, battery charging downtime can create gaps
and non-uniformities in observations. Nevertheless, it has
been shown that maps that model and forecast environment
states allow mobile robots to handle the changes better
compared to methods that simply adapt the maps to the
changes observed [1], [2], [3]. Maps that explicitly model
environment dynamics are called Maps of Dynamics (MoD),
which are postulated as “queryable models of spatial or
spatio-temporal patterns of dynamics” [4], [5].

Generally, we are interested in the class of “Temporal
MoDs” as classified in [4]. The Temporal MoD is an
environment representation parameterised by time [6]—
a spatio-temporal model, usually composed of multiple
spatial elements with independent temporal characteristics,
representing different dynamics at different locations [7].
Temporal MoDs assume that the patterns of dynamics are
time-dependent and repetitive; therefore, the state of the
environment in the future can be forecasted. In this paper,
we focus specifically and only on individual time series
gathered from robotic observation and their automated anal-
ysis. It is characteristic that the observations made in time
from a moving robot lead to irregular time series with large
gaps. Such an irregularity is not the standard case in other
time-series analysis methods, e.g., video analysis [8] but it
is inevitable for the practical deployment of autonomous
mobile robots.

Research into these methods has shown that the primary
drivers of changes in natural environments that robots need
to deal with tend to be periodic, whereas trends seem to
be negligible in the midterm. As a result, one of the most
successful ways to model them in a Temporal MoD is to use
the approach known as Frequency Map Enhancement (Fre-
MEn) [9] derived from the Non-Uniform Fourier Transform
(NUFT) [10], [11]. It was demonstrated in [12] that unlike
for a reconstruction task where more frequency components
lead to better performance, for the forecasting task, one
needs to specify a small set of accurately chosen dominant
frequencies in order to generalize well. The most important
characteristic of the FreMEn method is its ability to gener-



alize, allowing for useful short- and mid-term forecasts.

FreMEn introduced periodical dynamics into many dis-
crete robotic representations of an environment, showing
that its ability to predict the future structure of an envi-
ronment improves robotic mapping [13], [9], [14], [15],
localisation [12], [16], [9], [17], path planning [18], [19],
[20], [21], navigation [22], [23], exploration [24], [25], [26],
[27], [28], task scheduling [29], [19], [20], patrolling [24],
[30], searching [31], novelty detection [13], [9], [32], [33],
activity recognition [34], human-robot interaction [35], [36],
[20], [37], and demand forecasting [38], and helped people
avoid crowded places during the COVID19 outbreak in
Czech Republic [39], [40]. After a while, new robotic
methods started to successfully adopt the part of FreMEn
that models individual time series as a ‘black-box’ predictor,
for example [14], [17], [37], [21], [23]. However, all those
applications modeled phenomena with a sole underlying
generative process present in human working environments,
especially offices.

In these environments, the underlying dynamics typically
form week- and day-long periodic patterns of humans’
working routines. The day-based routines also naturally
match the day-night changes of an environment driven by
illumination. People’s routines are further strengthened by
the fact that people follow calendars and clocks. Therefore,
the set of frequencies analyzed by the original FreMEn was
tailored for week-to-hours-long routines and evolved into
an integral part of the algorithm [41]. As a result, FreMEn-
based methods improved the performance of robots in the
previously studied tasks, but their success obscured the fact
that the algorithm is optimized exclusively for a specific
type of environment. The deployment of the algorithm
in environments with general dynamics would require a
qualified guess of a suitable set of frequencies and their
manual implementation [42].

The problem of specifying a set of candidate angular fre-
quencies is extremely restrictive in the long-term autonomy
setting, where the design-time assumptions cannot be guar-
anteed. We propose an approach in which the most crucial
part of NUFT-based Temporal MoDs does not depend on
a manually pre-selected set of candidate frequencies. The
dominant frequencies are inferred directly from the data
using an iterative sampling-based search for a frequency
dominant with respect to the other frequencies. This gives a
robot the ability to learn temporal patterns without relying
on prior knowledge or assumptions about its environment
from the designer. We believe it opens the way for pertinent
applications of Temporal MoDs in environments where
underlying processes are unknown or under research, such
as deep sea, outer space, and local ecosystems [43].

II. RELATED WORK

Many robotic methods assume that environmental uncer-
tainty comes primarily from the imperfection of the sensory
input [6] and ignore the fact that the environment itself can
change over time [44]. Some methods consider environmen-
tal changes that significantly influence the deployment of a

robot. For example, illumination changes during the day can
be mitigated by filtering the received data in the photometric
domain [45], [46] or by utilising environment structure [47].
Some changes in the scenes can be modelled using Bayesian
probability [48], and seasonal changes can be suppressed by
sophisticated forecasting of visual appearance [49], [50].

Philosophically different approaches to environmental
changes emerged from the idea that localisation and map-
ping methods used by autonomous robots need not focus
only on accuracy but, more importantly, on their flexibility,
robustness and adaptability [51], [3]. The idea evolved
during the STRANDS project [52], focusing on the long-
term deployment of autonomous robots in natural, human-
populated areas, and then expanded during the project
STROLL [53]. The STRANDS consortium argued that envi-
ronmental changes should not be understood as an inevitable
source of the gradual degradation of well-established static
models (occupancy grids, visual landmarks, edges in topo-
logical maps). Instead the natural dynamics of the envi-
ronment can learned, and exploited by long-term running
autonomous systems. The STRANDS team observed that a
large part of the dynamics in human environments relates to
natural cycles, and they determined that the uncertainty in
the models can be represented as a function of time. Through
identification of these routines, autonomous robots can learn
from and adapt to the changes rather than trying to neglect
or suppress them.

A. Non-FreMEn Approaches to Spatio-Temporal Mapping

The most common way to model periodical events in
the spatio-temporal maps is to include a priori known
periods derived from the designers’ expertise in the model’s
architecture. The straightforward way is to create seasonal
windows that include time-specific maps [54], [55], [56],
[42], [38], [57]. Another approach is based on kernel warp-
ing. The map includes a continuous Gaussian mixture model
with predefined periodical kernels [58], [59], [60], [61], [62].
There also exist approaches of manual preprocessing the
data to find dominant periods using auto-correlation [63],
[64], [65] and then applying the found periods into the
architecture of the spatio-temporal maps.

Automatic estimation of periods in the data was targeted
in [66] by applying Gaussian processes to air flow data. The
model included a covariance matrix consisting of separately
calculated spatial and temporal components. Temporal com-
ponents included temporal decay and periodic components
estimated from the data iteratively using frequency analysis.
The same group then expanded the idea by proposing Hilbert
maps [67], their incremental update [68], Fourier Feature
Approximations for Periodic Kernels [69] and its multi-
dimensional variant [70]. However, the mathematical and
computational complexity limits its usage in autonomous
robot systems.

B. Fourier Transform in Long-Term Autonomy

In [13], the authors apply the Fast Fourier Transform
(FFT) to the past observed binary states of an occupancy



grid and define the occupancy states as a periodic function of
time. Spectral Mapping thus acquired the ability to predict
the states in the map. Compared to the classical occupancy
grid, Spectral Mapping lowered the prediction error by 60%.
They optimised the occupancy map by combining Spectral
Mapping with an octree-based spatial model [71] into a 4-
dimensional model of the environment, FROctomap [72],
and integrated this within the Robotic Operating System
(ROS). Spectral Mapping was also applied to the topological
localisation task [12]. The robot visited 8 different places
every 10 minute for one week and captured the visual ap-
pearance of its surroundings at every place. The images were
processed into image features, and the FFT then modelled
the visibility of those features. The robot created a map of
features specific to a place and time. The experiments proved
the ability of the robot to localise itself using the feature
map even after 3 months. The authors found a correlation
between the prominence of periods used in the model and
the persistence of the map.

The Spectral Mapping method proved that temporal pre-
diction gives autonomous robots an advantage, but inherent
FFT principles require a stable observation rate without
interruption. It is hard to attain such observations outside
a laboratory, especially with autonomous mobile robots.
Additionally, Spectral Mapping cannot be updated by adding
new data from later observations, limiting long-term de-
ployments. Those problems were addressed by Frequency
Map Enhancement (FreMEn) [73], [9] which is based on the
definition of the Non-Uniform Discrete Fourier Transform
(NUDFT) [74] rather than FFT and allows building and
updating models with irregular data.

FreMEn was applied to the edges of a topological
map [18] as a part of the Time-Indexed Navigation Markov
Decision Processes. During the experiment, the robot gath-
ered data over 2 months and demonstrated a significant im-
provement in planning the optimal time to navigate through
the environment. To prove the dominance of the proposed
approach in planning tasks, FreMEn was applied to a robotic
search task [31]. The robot modelled the presence of people
at different places in 3 different environments. During the
experiment, it planned a path through the environment,
intending to find a person as quickly as possible. Compared
to the strategy based on the static map, which did not
consider human habits, the strategies exploiting the model
of usual human behaviours decreased the search time by
25% and the number of visited places by 33%. Aiming
to model the number of people in certain areas instead of
binary states or the probability, the authors of [35] redefine
FreMEn, which resulted in an iterative approach denoted as
Addition Amplitude Model (AAM). Recently, FreMEn was
used to build a map that considered not only the human
presence but also their direction [14], [27]. Such a map
provides information that allows for planning navigation
in a crowd while adhering to human flows [19]. A non-
traditional application of FreMEn can be found in [37],
where FreMEn served to ensure the optimal division of tasks

between multiple robots operating in a human-populated
environment.

FreMEn proved its superiority to the classic robotic
approaches in mapping for navigation and provided original
insights into the dynamics of the environment. The question
of whether it is possible to utilise FreMEn’s qualities in
exploration tasks arose. The initial experiments on life-
long spatio-temporal exploration provided a hypothesis that
the best time and place to explore correlates with the
uncertainty of FreMEn [24]. That led to the development
of the information-based Monte-Carlo scheduler for spatio-
temporal exploration [25]. However, visiting places when
the robot is still determining what to expect can be con-
trary to the robot’s aims, for example, avoiding busy hu-
man flows. This contradiction, known as the exploration-
exploitation dilemma, was thoroughly studied in [29]. The
effort was crowned by defining the life-long spatio-temporal
exploration of dynamic environments [26]. Various explo-
ration strategies were later studied over the spatio-temporal-
directional maps [27].

The success of applying FreMEn into various robotic
tasks led to its integration into the STRANDS system [52].
The STRANDS system controlled two robots deployed to
2 different environments with different roles. One of them
was a security robot operating in an office building in the
UK. The second one operated in an Austrian care home
with an overall autonomous deployment of 8 months. As
the robot had to fulfil its task while simultaneously building
and updating its map, the most promising exploration-
exploitation strategy was successfully integrated into the
STRANDS system. The gradual growth of its performance
in real deployments proved the theoretical conclusions [36].
It should be noted that FreMEn, as a mapping, navigation,
and planning system, fulfilled the strict requirements of the
privacy policy as it did not need to store any visual images.

C. Closer Look at FreMEn

1) Definition: Generally, FreMEn [24], [9] replaces sta-
tionary uncertainty models of binary states in robot maps
with functions of time, represented by their frequency spec-
tra. For example, the probability of grid cell occupancy is
not modelled by a single probability value, updated only by
direct observation. Rather, each occupancy grid cell contains
a frequency spectrum-based time series model derived by
using the NUDFT over previous observations. As the time
series decomposition is not used for reconstruction but for
prediction, only a few of the most prominent coefficients
of the Fourier spectrum are chosen to serve as parameters
of the time series model. The number of these prominent
coefficients is referred to as the order of model.

The difference between FreMEn’s decomposition and the
decomposition using NUDFT lies in the ability of FreMEn
to incorporate new observations incrementally, thus being
able to provide predictions at any time during the robot
operation. This feature enables FreMEn’s on-the-fly learning
from sparse and irregular data [76]. Let us assume a set of
candidate angular frequencies @y € Q and the order of the
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Temporal MoDs have been demonstrated to bring advantages in long-term autonomy, for example, in tasks such as visual localization. Robotic

observations provide us with a series (centre panel, red) of visibility observations of one specific image feature. In this example, it is a reflection of
a light source (centre panel, red circles). The time series is decomposed in the spectral domain (left panel), and the dominant frequencies (green) are
selected for the model (centre panel, green). The visibility of the feature can then be forecasted (right panel, blue) in the sense of its probability (right

panel, green). Courtesy of [75], ©2020, IEEE.

model o. Starting with n = 0 observations, FreMEn updates
the model parameters by adding a new measurement s(¢) in
the following way [41], [76]:

« update to the mean probability

U<

g (+5(0)).

« Y, update to the state spectrum
1
n+1
o Vay update to the observation spectrum

1 .
n+1 (nﬁk+ejtwk) )

« update to the number of observations

o (nak—i—s(t)ej‘“’k),

B <

n<n+1.

Then a prediction can be performed at any time 7y consid-
ering all previous measurements as follows:

o Vk calculate the predictive spectrum Y < o — 1Bk,

« choose o components {.}{ with the highest |y|,

« and predict the state s(fp):

1 if p+2Y9 7| cos (oo, —arg(y:)) > 0.5
s(t()) = .
0 otherwise.
FreMEn was also defined as an estimator of the probability
of occupied state occurrence P (s(r) = 1) [25], [9] such that
the prediction (II-C.1) was transformed into:

P(s(ty) = 1) =

= min (max <u+2i|yc|cos (fo @ —arg(%)),O) ,1) )
1
1

see an example application that forecasts image feature
visibility in Figure 1.

The considered angular frequencies @y and the order of
the model o need to be chosen wisely in advance. The
original advice for the set of candidate angular frequencies
was proposed in [25] as @y € Q4 = {27k/ 86400}%11 (note
that one day consists of 86400 seconds).

2) Parameters: The set )4 served well in robotic ap-
plications where the most significant dynamics came from
day/night changes, like topological localisation [12] based
on the visibility of features in the video frames, or models
of human behaviour calculated over several days using
datasets that do not cover weekly routines [25]. However,
it is possible to deduce that the set of candidate angular
frequencies used by FreMEn includes the angular frequency
27/604800, for example, from notes in results [24], from
the graphs [18], or by finding a back-reference from one
article [25] to another [24]. By the deep study of the
associated source code [41], one can uncover that the
standard set of candidate angular frequencies in FreMEn and
FreMEn-derived methods is @y € Q63 = {27k /604800}%8 ,
which was not discussed in any work known to authors. The
set Q163 D Q94 includes the frequencies once-per-week and
once-per-day, which reflects the environmental dynamics
derived from the fact that the majority of the population
work on a daily and weekly basis [17].

In the original paper [9], it is advised to choose the best
model order o by testing the prediction error of models with
different o trained on the data gathered before the last model
update and tested over the data gathered afterwards. Such
an approach is justified in the incremental updating of the
model by an autonomous robot, whose life cycle consists
of working and charging. However, in some experiments, in
which the incremental updating has no meaning because all
the data are already known, the authors of the experiments
omitted the question ‘how to divide the training dataset’,
which is not apparent from the original advice [9], and chose
o, for example, arbitrarily [25], [32], or by optimising the
models over the testing data [17], [15].

Note that choosing order o as an arbitrary constant can be
successful in some experimental settings but goes against the
original idea. An important part of FreMEn’s applications
is its ability to recognize the periodic behaviour of the
observed environmental phenomena. That includes choos-
ing a null complexity o = 0 and forecasting only a time-
independent probability (constant value) when appropriate.



Deciding on the complexity of the explanatory model is
directly responsible for the ability to generalize from the
observed dynamics.

3) Shortcomings: Although the non-rigorous approach to
estimate the hyperparameter o is not primarily the problem
of FreMEn, it accents the weaknesses of FreMEn, which
is the necessity to manually choose the correct set of
candidate angular frequencies Q g ugidares- 1his set needs to
include the angular frequencies expected by the researchers’
knowledge about the environment, Qeypecred C Qcandidates-
The researchers then use FreMEn to calculate the amplitudes
of the Q. ungidares and expect that an optimal model order is
not much higher than ||Qqypecreq||. Although it is common
in the time series analysis to provide a chosen mathematical
tool with the known frequencies like once per day, once per
week, or four times a year, the original aim of FreMEn,
as we understand that, was to equip autonomous robots
with the ability to learn the spatio-temporal structure of
their environment on their own. In this paper, we primarily
focus on developing this original intention of FreMEn by
removing the dependence on a manual choice of candidate
frequencies Q.

III. PROPOSED APPROACH
A. Main Idea

The FreMEn-related Temporal MoDs shift from neglect-
ing dynamics to anticipating environmental changes by mod-
eling cyclic, stationary patterns of state [77] or domain [78]
changes, improving long-term autonomy and robotic oper-
ations. However, contrary to expectations, the original Fre-
MEn approach cannot, in general, find the most significant
frequencies in the data because the set of frequencies is a
necessary and manually chosen input to the algorithm [41].
To target the ability to estimate dominant frequencies that
provide generalisation with sufficient forecasting potential,
we step back from incremental learning defined in FreMEn
to the decomposition of a batch of data based on a non-
uniform discrete Fourier transform.

It is possible to find the frequency with the (almost)
highest amplitude using, for example, brute force. However,
finding multiple frequencies and their correct amplitudes
that provide good prediction is problematic due to parasitic
frequencies. Inspired by the construction of Warped Hyper-
time [17] and AAM [35], we propose an iterative version
of searching for the most prominent frequencies in the data.
Starting from the model order o = 0, which is equivalent
to averaging of the data, we subtract the model from the
data and find the frequency with the highest amplitude in
the newly created error time series.

We lighten the exhaustive search for the global maximum
by an iterative sampling-based search for a prominent maxi-
mum of amplitudes, which allows us to define a termination
condition when the search cannot reach the result. On the
other hand, the search can get stuck in a local maximum and
provide an incorrect model. Therefore we also propose an
initialisation stage that consists of multiple model building

over several parts of the training data. Those models provide
the candidate frequencies to the main search algorithm as
starting positions, which lowers the probability of being
stuck in a local maximum.

B. Method Overview

We propose a method derived from FreMEn that can be
used for the probability of the state prediction and predic-
tion of time series with a negligible trend. The prediction
function needs to be selected from (1) and (2) based on the
task or demand.

Let us loosen the restriction for time series from binary-
only s(¢) to a real-valued one R(¢). Then we can define the
prediction at time fo of a model M4(fy) with order ¢ as a
regression:

q
M(to) = Y +2Y_ || cos (too. — arg (1)), 2)
1

where Y, = R() is an average of time series values R(t;),
i=1...n and n is the number of measurements, and 7,
are coefficients of the Fourier series corresponding to the
considered angular frequencies w.. The model iteratively
chooses its components by creating a set of parameters P? =
(Y, ¥e, @¢)?_,, starting with P° = (y). The iterative process
goes as follows:
1) calculate the time series E(¢) of errors E (1;):

E(t;)=R(t;) —M(t;),
2) find Ypax, where |Ynax| = max{|y|},cq and

y=avg ((E(n) ~E@®)) ) 3)
3) expand the actual model’s parameters
Pq+l = (any;nax»wmax)>

4) if the termination criterion (see Section III-C) is not

met, repeat.

The proposed iterative method needs a suitable algorithm
to search for 7,. that includes a termination criterion.
Therefore, the original question lying in the background
of FreMEn of ‘what set of frequencies the user needs to
choose’ is changed to ‘what algorithm to search for the
global maximum of a function to use’. In the next section,
we propose a relatively straightforward search algorithm.

C. Search Algorithm

Although the search algorithm should look for an angular
frequency ®, we design and describe this as a search for a
period P. The relationship between them is given by P =
%”. We believe it is more convenient for the reader, e.g.,
considering an angular frequency @ = 0.000010389s~! and
a corresponding period of one week. For a similar reason,
we will also use the term amplitude for |y|.

The graph of amplitudes over the domain of (uniformly
distributed) angular frequencies shows a high number of
local extremes (Figure 2) related to the parasitic frequencies.
That led us to the idea of an iterative sampling-based search



Algorithm 1: Search algorithm — an iterative ap-
proach to find the best frequency element

Input:
values - data values,
times - data timestamps,
SR - success rate,
N - number of samples,
NH - sample neighbourhood size,
Iters - maximum number of iterations,
Pyuspec: - suspicious predictions from the previous
initialisation (optional)
1 P < half of the times duration;
2 Py + twice the median time step;
3 P < rnd*(Puin, Prax) N—times OR Pyygpect;
4 Nyyee <05
5 repeat
6 |y| + amplitudes corresponding to periods in P;
7 e R 2V I
8 Nyyee < 0;

9 Idx < 0;

10 for i < O,N do

w || seale [yl /I7):

12 if scale > 1 then

13 Nyce < Ngyee + scale;

14 for s < 0,scale do

15 radius < P;/NH,

16 Pyay < rnd?(P; — radius, P, + radius);
17 Idx < Idx+1,

18 for i + Idx,N do
19 L P+ rnd2<Pmin;Pmax);

20 Iters < Iters — 1;

21 until Ny,.. < SR-N or Iters > 0;

22 Py < period related to max|y |v];;

23 radius < Ppes /NH;

24 P < rnd(Pyey — radius, Ppeg + radius) for each N;
25 |y| + amplitudes corresponding to periods in P;
26 return frequency description related to maxiy |vl;
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Fig. 2. The graph of amplitudes |y| over the domain of angular
frequencies @ using data from the experiment in Section VI-A. The graph
shows a high number of local extremes.

for a prominent maximum of amplitudes based on robust
consensus, which can avoid local extremes and find one
that is dominant in the context of others, see Algorithm 1.
From the theory of Fourier transform, the interval of possible
periods needs to be bounded from the top by half of the
length of the dataset and from the bottom by twice the
step [79]. While the calculation of the maximal possible
periodicity P, at line 1 is straightforward, estimation of
the minimal period P,; (line 2) can be tricky when the
sampling rate is not consistent. When P,;, is chosen to
be too small, Fourier transform-based algorithms tend to
fit the frequency of measurements, which are undoubtedly
the most important events in the data but do not provide
any information about the measured phenomenon. As the
data can also contain a few long gaps in measurements,
we estimate P,;, as twice the median of time differences
between subsequent timestamps of the measurements.

Amplitude visualised in the periodicity domain, the door dataset
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Fig. 3. The graph of amplitudes |y| over the domain of periods P using data
from the experiment in Section VI-A. The graph shows many local extremes
that form sharp peaks in an area of short periods and wide peaks in an
area of long periods. Note that the length of the data equals approximately
70 days.

The graph of amplitudes over the domain of (uniformly
distributed) periods (Figure 3) shows that the amplitudes
form sharp local maxima at short periods, followed by
wider maxima at longer periods. We consider this during
the random period selection. The function rnd(a,b) at lines
3, 16, 19, 25 in Algorithm 1 provides a random position
pos between values a and b such that the random value r
between 0 and 1 is generated and pos = r(b—a). Its variant
rnd®(a,b) at lines 3, 16, 19 then produces pos = r*(b—a)
which leads to a preference for shorter periods. At ine 25,
we search only for a local maximum, and therefore we apply
a uniform random selection rnd(a,b).

After the selection of a set of random periods P, all P, € P
are transformed into a set { @, = 27/F;} and the coefficients
Y. of the Fourier series are calculated using equation (3), see
line 6. The corresponding amplitudes |7|, are then compared
to their mean |y| (line 11), and the subsequent search is
partly focused around ‘prominent’ periods corresponding to
‘higher than average’ amplitudes (line 15). Note that scale
at line 11 is an integer, and therefore Ny, grows (and
the search is targeted) only when |y, is more than twice
|7|. Nsuee cannot grow over 0.5N, and when it meets its
maximum (usually in between [0.4N,0.5N)), it collapses



into a lower value as half of the sear_ches are selected close
to a local maximum and the average |7| is too high. From the
behaviour mentioned above, we can conclude two things:

1) if Nyuee S 0.5N, the selection was realised close to a
local maximum (line 21)

2) and more importantly, if the algorithm cannot reach
a high enough value of N, there is probably no
prominent periodicity in the data, and, therefore, the
search finishes the iterative expansion of its model.

This stopping criterium serves as a natural way to decide
on the complexity of the explanatory model. Users do not
need to decide on a cross-validation technique to obtain a
satisfactory order o, because the generalisation of dynamics
of observed phenomenon is an inherent part of the algorithm.
Note, that in case a phenomenon is suspected of being
random the algorithm returns a constant—an estimation of
expected value (Equation 1), or an average of time series
values (Equation 2). Similarly, if there is no prominent
frequency, i.e., its amplitude is not significantly higher with
respect to others, the method also returns an average.

The hyperparameters of the frequency spectrum search,
the success rate SR, the number of samples N, the sample
neighbourhood size NH, and the maximum number of
iterations [ters were tuned by hand on 10% of the ‘MHT
building lecturer office” of the STRANDS dataset [80]. The
data used for hyperparameter tuning were not utilised in
the experiments presented in Section IV. The success rate
was set to SR = 0.4 for the above reasons. The number of
samples N directly influences the computational time, which
led us to set it to a relatively low value of N = 100. We
included the supplementary search (lines 22*) for a local
maximum to ensure more stable output. The neighbourhood
size was set to NH = 200, which defines the interval around
the period as 5%o of the length of the period. The maximum
number of iterations was set to Iters = 20. Reaching the
optimal set of hyperparameters was not part of our current
research. Regarding the search over the frequency spectrum,
the presented approach is relatively straightforward and
opens new possibilities for the improvement of selecting
the best period.

D. Initialisation

While testing the search algorithm, we found that the
output is unstable due to the randomness of the search.
Therefore we propose a simple initialisation step that con-
sists of multiple searches for prominent periods at a few
different (but large and overlapping) subsets of the training
data. Every run of the search algorithm produces a set of
suspicious periods Pyspec:. Those periods are then inputted
into the main run of the searching algorithm and replace the
corresponding number of randomly initiated periods P (line
3 in the Algorithm 1).

The number of suspicious periods is not limited as it
is a set of periods found by multiple runs of the search
algorithm. Therefore, there exists a possibility that the num-
ber of suspicious periods exceeds the number of samples

|Puspect| > N in the main search algorithm. The reduction
of the set Pyyspecr Would need another heuristic which needs
to be designed or optimised according to the knowledge of
the data or experience with the tested scenarios. To avoid the
increase in complexity and the number of interventions with
generally unpredictable impacts, we decided that in such a
case, the number of samples N in the main search algorithm
is increased according to the number of suspicious periods,
|Psuspect‘ >N = N« |Psuspect|-

In theory, the increase of N can raise the computational
time significantly, as there is no parameter to control the
upper limit of the number of suspicious periods. However,
in our experiments, we did not experience a situation where
the number of suspicious periods exceeded twice the default
number of samples N. On the other hand, we experienced
one situation when the main search algorithm produced
thousands of prominent periods: the binary time series
consisted of a few thousand zeros and only two ones, the
default number of samples was N =5, and the maximum
number of iterations was Ifers = 50. The calculation carried
on for several hours and was manually terminated as normal
execution time is in the order of seconds.

IV. EVALUATION

The evaluation consists of multiple experiments divided
into three sections covering one scientific question each:

1) what difference in prediction quality should we expect
when we replace the original method with the pro-
posed method in tasks in which we expect the original
method to excel,

2) can the proposed method compete with the original
one in robotic experiments that were designed to prove
the original method’s supremacy,

3) and what is the quality of the predictions of the com-
pared methods when applied to phenomena unrelated
to the human week-based calendar?

However, the existing benchmarks are limited by the scope
of phenomena considered, namely human routines and envi-
ronmental changes due to the day-night cycle. Therefore, al-
though we hypothesise that the applicability of the proposed
method is much wider, we cannot provide a historically
verified set of experiments to support it. We substitute
the lack of verified robotic experiments by discussing the
relative quality of the proposed method in the context of the
questions above. We also weigh the price of good generalisa-
tion in the specialised tasks with the new capabilities that the
method acquired. The overview of all presented experiments
can be seen in Table I.

In Section V, we compare the prediction quality of
different Fourier transform-based approaches applied to data
describing human presence. We focus on the impact of
substituting the original approach with the proposed one
on the quality of a model, its predictions, and its learning
speed. It was shown in previous works [17], [15], [19],
[20] that FreMEn-based predictors using the tuned set of
angular frequencies Qg3 provide high-quality predictions



Source Time between

Time span

Section . Environment  Sensor
phenomenon observations [s] [weeks]
door V.A 60 3 office static RGB-D camera
door VLA 60 18  office static RGB-D camera
human v.C 330 45  office static RGB-D camera
human V.D 4800 45  office static RGB-D camera
human VE 330 45  office static RGB-D camera
human V.F 4800 110 office static RGB-D camera
human V.G 4800 45  office static RGB-D camera
image features VLB 600 53 open office SCITOS-GS w. camera
temperature VILA 180 180  space VZUSLAT-1
proton speed VIL.B 14400 14 space DSCOVR satellite
proton density VIL.B 28800 14 space DSCOVR satellite

TABLE I

OVERVIEW OF THE DATASETS USED FOR EXPERIMENTAL EVALUATION.

useful for multiple robotic scenarios. Fourier transforms
with Qg are understood as benchmarks indicating the best
available prediction quality. We study the dependence of
convergence of the proposed method’s prediction quality
and the original method’s prediction quality on the training
dataset’s length and amount of data. We also introduce the
basic characteristics of the proposed method.

In Section VI, we study the applicability of the proposed
method in robotic applications by evaluating the quality of
predictions of compared methods in a set of experiments
established during the ICRA 2017 Workshop on Repro-
ducible Research in Robotics [81] as a benchmark for spatio-
temporal models. In previous works, those experiments were
dominated by FreMEn-based methods using Q63 or Q4
because the phenomena in the datasets are derived from
day-night changes or the weekly-based routines of people.
The fundamental question here is whether the proposed
method can compete with FreMEn in its dominant area of
applicability.

In Section VII, we evaluate the ability of the compared
methods to predict phenomena whose changes are not
derived from human routines or the alternation of day and
night on the Earth’s surface. Here, we study the applicability
of the proposed method in more general autonomous robot
tasks such as space exploration, which are not bound by
terrestrial routines. These experiments play a crucial role in
our presentation as we believe the autonomous robot needs
the ability to build and maintain a model of its environment
without prior knowledge.

A. Criteria

We compare the predictions using three different criteria:
mean squared error (MSE), coefficient of determination
(R?), and expected encounters (EE) [19], [20]. Although
there exists a debate about the acceptability of MSE in
robotic spatio-temporal maps [19], [38], we included it as a
conventional criterion that was used in original experiments
(Section VI).

The second criterion used in our comparison was R, a
standard statistical criterion used for assessing goodness-
of-fit in the regression tasks. It takes values in the range
(e0,1] and can be interpreted to represent the ratio of vari-

ance explained by the model compared to the uninformed
(mean) model. The excellent performance of the mean
model and poor discrimination of models is one of the
arguments against using MSE-related metrics. In our case,
we computed R? for individual models over testing data,
not training, which allowed us to judge both the degree of
overfitting and stability of the data-generating process. The
mean model necessarily has R?> = 0 for training data and
should stay very close to zero unless there is a change in
the process or some numerical artefact.

Following the recent research about criteria suitable for
this scientific field [20], we also included EE. As the pre-
dictions for the binary variable (estimated probability of the
detection [9]) are limited by O and 1 (see Equation (1)), the
predicted ‘zeros’ and ‘ones’ form two classes of impossible
and certain events. The events inside such classes are not
distinguishable and cannot be ordered by the predicted
values. Therefore, we followed the instructions in [20] and
every value of EE in our experiments was calculated as
the median of 9 independent calculations of EE, each with
random reordering of all predictions at the beginning of the
calculation.

B. Predictors

The most trivial predictor used in our experiments always
predicts an average of the training data. It is denoted
as MEAN. In some experiments, we included a seasonal
windows-based approach that uses predictors derived from
the histograms, HISTday and HISTweek. HISTday consists
of 24 bins and HISTweek consists of 168 bins, where each
bin has length 1 hour. Histogram-based predictors predict
an average value of a matching bin.

All predictors based on Fourier transform include centring
the training data around the mean, calculation of the mean
of spectral components Y using available libraries [41],
[82], [83], choice of a subset of spectral components, and
prediction following Equation (1) or (2) for binary or real-
valued time series, respectively. The proposed method is
denoted as NUFTsearch. If the methods use a set of angular
frequencies Qi43, we denote them as NUFTinfo, because
they are informed a priori what set of periods are expected.
Other Fourier transform-based predictors derive the set of



Fig. 4. MHT lecturer office dataset: snapshots of the person present and
absent. On the left side of the pictures, we can see an open door (left) and
closed door (right).

angular frequencies from the length of data and the median
of the steps between consecutive steps. We denote them
as NUFTauto. The NUFTauto method corresponds to the
classical Fourier transform, so its complexity, in general,
is 0(n*), but can be sped up to &(n log(n)). NUFTinfo
on the other hand has a fixed amount of frequencies it
considers, which makes the computation &'(n). For a similar
reason, one can expect the NUFTsearch method to have the
same complexity as NUFTinfo even with the existence of a
stopping criterion of the non-deterministic computation, as
that is not directly tied to the amount of input data.

All NUFTinfo and NUFTauto also include a postfix
that defines how the order of the model was estimated.
NUFTinfoCV_[criterion] and NUFTautoCV_[criterion] used
k-fold cross validation to get the best order o for relevant
criterion—FEE for expected encounters, R2 for coefficient of
determination, and MSE for mean squared error. NUFTin-
foM5 and NUFTautoM5 do not estimate the best order. Their
order was set manually to o =5, which makes the methods
easy to implement and the model NUFTinfo obtained with
this order showed good and stable quality of predictions
in various human-data-based experiments performed by the
authors previously.

V. EXAMINATION OF BASIC CHARACTERISTICS

FreMEn is usually applied to robotic maps constituted by
independent components representing features detected or
not at some place and time. Those features form a binary
time series; thus, each component has its own model. Those
maps then serve as predictors of future states of previously
detected features. The whole set of the predicted states of
features serves as an estimation of an environment state
at the requested time. The robot can then plan its actions
according to the expected structure of an environment in
the future. If the proposed method is supposed to substitute
FreMEn in autonomous robots, we will need to estimate
the difference between the original and proposed method’s
impacts on the robotic maps.

For an initial examination and comparison, we chose
the open dataset ‘MHT building lecturer office’ gathered
during project STRANDS [52] that can be downloaded from
the project’s pages [80]. The data consists of preprocessed
video frames, the frame rate is 0.2Hz, and the length of

the video is approximately 2 years. The video was captured
in a lecturer’s office at the University of Lincoln. Every
video frame is represented by a set of values, represent-
ing the scene’s depth, captured with a 320 x 240 RGB-D
camera, see Figure 4. For privacy reasons, only the 16-bit
depth of the image was saved and further processed into
a 3D map [72]. A straightforward analysis of part of the
depth values determined if the lecturer was available for
consultations at the office and if the office doors were open.
We transformed the dataset into two binary time series, one
tracking the lecturer’s presence and one tracking the state
of the door (open or closed), and understand them as good
representatives of binary robotic map elements. These time
series follow a meaningful changing phenomena, the data
collection is in line with the usual robotic setup, the sensoric
measurements are estimated using a straightforward rule,
and the data include real-world noise. Moreover, since the
phenomena are directly related to human behaviour (being
present in the office and leaving the doors open), we can
strongly expect that a model using angular frequencies from
Q68 will provide the best forecasts.

We will compare the proposed method with predictors
derived from FreMEn using different criteria, training data
lengths, and measurement irregularities. Some predictors
will use angular frequencies from Q14g, and some will derive
the set of angular frequencies from the data. Their order o
will be set using k-fold cross-validation over the training
data, and, in one case, we will use the default order 0 = 5.

A. Dense and Frequent Data

Our first experiment studies the method’s behaviour in the
scenario with regular and frequent observation in order to
establish and show the performance in the easiest possible
setting. For this, we take the data concerning the state of
the door every 60 s, following previous works [81], [17]. As
noted before, this dataset has been used as a benchmark for
spatio-temporal modeling because it is representative of the
data the robot collects once it starts performing some task in
a long-term autonomy setting. This includes gaps due to the
system malfunction and noise on the sensory information.

The original experimental setup and results are provided
in Section VI-A. Here, we show the models’ forecasts for
two selected settings in detail. In these, the models are
trained on 28 and 29 days long datasets, respectively, and
their forecasts are tested on 7 subsequent days. The lengths
of the training datasets were not chosen arbitrarily. We know
from previous work that the most distinctive frequencies
found by FreMEn refer to one-week and one-day periods,
and 28 days correspond to 4 weeks, while 29 days are not
divisible by 7. Therefore, the models optimised for week-to-
hours-long routines should have an advantage in the 29 days
long training scenario against the other ones. The 28 days
long scenario, on the other hand, gives uninformed methods
the opportunity to provide the best results.

In Figure 5, we can see forecasts of different models. The
forecasts are time series of the expected probability of the
door being open during the 7 days after the training. The
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Fig. 5. Forecasts of door state probability for 7 days following the
training of the models for 28 days (top) and 29 days (bottom). Both
informed models, NUFTinfoM5 (blue) and NUFTinfoCV _EE (purple), and
the proposed NUFTsearch (red) provide meaningful forecasts matching the
corresponding ground truth (states closed/O and open/1, black dots) in both
scenarios. The forecast of the uninformed model NUFTautoCV _EE in the
second scenario is obviously less informative than the other methods due
to an unfortunate set of candidate frequencies derived from the length of
the training dataset.

measure or quantification of the forecast quality is shown in
Table II. For added insight, the table also provides results
for MEAN, whose forecasts are not depicted in the graphs.
However, in the figure, we can see the ground truth of the
experiment, showing when the observed door was open and
when it was closed. We can see that the door in the test
datasets was open only during the day on weekdays. There
is also a visible pattern of the door being closed around
noon (lunch). Although the state of doors is, in general,
derived from many complex physical, social, legal, and
biological rules, such as the orbital characteristics of Earth,
job objectives, law on workplace safety, and concentrations
of the ghrelin hormone, the presented models are able to
generalize them to a certain extent. This generalization and
the ability to forecast the probability of the state of such
an obstacle can be an advantage [20]—even though the
autonomous robot does not actually understand any of the
underlying causes.

The 28 days-long scenario results give us insight into the
advantage added by the set of candidate angular frequencies
Q168. NUFTauto uses a set of candidate frequencies Qg,1028,
Q168 C Quurong, derived from the length of the training
dataset (Quuons = {2mk/14days,...,2wk/2 minutes} and
Qs = {27k/Tdays,...,27wk/1hour}). As we can see in
Table II, contrary to Qg C Qauro28, the results of cross-
validated NUFTinfoCV_EE are better then NUFTautoCV_EE
using any of our three criteria. The results in 29 days-
long scenario show apparent failure of NUFTauto (Qg1029 =

EE R? MSE
days of training 28 29 28 29 28 29
NUFTinfoM5 172 159 037 036 0.077 0.074
NUFTinfoCV_.EEE 156 135 049 0.52 0.062 0.055
NUFTautoCV_EE 162 517 046 0.02 0.066 0.113
NUFTsearch 235 187 031 034 0.084 0.077
MEAN 711 676 0.00 0.00 0.121 0.116
TABLE II

COMPARISON OF RESULTS FOR THE MODELS TRAINED ON THE 28 AND
29 DAYS LONG DATASETS.

{2nk/14.5days,...,27k/2minutes}, Qies & Qaurong)- Its
forecast is very close to MEAN.

NUFTsearch is the worst and second worst of all NUFT
predictors in the 28 and 29 days long training scenarios,
respectively. However, it is not sensitive to the length of
the training data, and its forecasts are comparable in quality
to the optimized methods. The forecasts of NUFTsearch in
these two scenarios show that it can be integrated into the
autonomous robotic system, and users can expect meaning-
ful results relevant to autonomous decision-making.

B. Moving Observer

Any useful autonomous system needs to first provide a
service to its users. Thus, observations the system makes
cannot be guided by the need of the technology but rather
come as a consequence of its main activity. We assume
that the robot is already fully able to perform its task
and is equipped with working mapping, localisation, and
navigation subsystems.

Such a robot operating autonomously for long periods
of time can then observe changes in the state of particular
environmental features or obstacles. Although the observed
dynamics are not necessarily directly connected to its current
task, they can affect the robot routines. If the robot is capable
of modelling the dynamics of individual places and building
a Temporal MoD [4], it can use this map for better planning
or scheduling of its tasks [20] in the future.

To emulate the robot infrequently observing a given
location during its deployment, we have subsampled data
collected on a continuous basis by a stationary sensor. The
chosen environmental feature is the presence of a person
in their office, and we assume a robot is operating au-
tonomously, performing an unknown task. The robot moves
through the building, deals with its job, and sometimes
sees the person in question (observes the environmental
feature). The length of the robot’s working routine does not
correlate with the length of the person’s working routine. Its
behaviour does not change over time; the person’s presence
is not an important obstacle that heavily influences the
success of its operation. The robot is building a model of
the presence of the person that can be useful and included
in its map.

The length of the training data gradually grows, and
the actual model estimates the person’s behaviour in a
subsequent week. The forecasts are then compared with the
relevant subset of the test dataset obtained from the original



data frames. This experiment shows the convergence of the
proposed method and the uninformed methods (methods
not using Qg a priori) with the informed methods, which
exploit the a priori knowledge of human behaviour, i.e.,
which use Qj¢g. Thus, we will provide fundamental insight
into the applicability of the proposed method in applications
where FreMEn dominates.

For this experiment, we used the first 217 days of the
original data. The data include the summer semester, sum-
mer holidays, winter semester and Christmas. We expected
that the person’s presence in the office during one semester
could reflect somehow stable routines of the studied subject,
while the summer holidays and the Christmas period will
reveal irregularities and changes in the overall dynamics.
The behaviour in different semesters probably differs, but
the routines are derived from a week-based timetable. Thus,
we expect that the process defining the observed subject’s
presence is, in general, static. One can then see the impact of
temporally local violation of this assumption in the graphs
attached to the experiments. However, a deeper analysis of
these specific periods is out of scope of this study, see basic
assumption in Section III-A.

The test dataset consists of detections every 5 seconds and
forms a binary time series. The training datasets consist of
irregular detections specific to each training data, simulating
the robot travelling around the halls and detecting people at
specific places.

We use 2 different training datasets consisting of the
selection of the measurements from the test dataset. The
training datasets simulate a situation where the robot revisits
the office on a semi-regular basis with a period consisting
of a fixed time representing the length of the patrolling path
and variable delay representing unexpected events along the
path. Moreover, we model situations where the observation
could not be performed, resulting in missing data. We
model the variable delay by the exponential distribution
and the inability to perform the observation by the uniform
distribution. For the sake of simplicity, we did not include
the time for charging and other expectable irregularities like
maintenance or malfunction of the system. The fixed delay
between the measurements in the first training dataset was
5 minutes. The mean value of variable delay was set to
30 seconds, and the probability of missing observation was
10%. In the second experiment, the gap was 1 hour plus an
expected delay of 20 minutes and 20% of missing values.

The predictions were evaluated using a hold-out method.
Every time the predictors were asked for predictions, they
learned the model from the previous data in the train-
ing dataset. They predicted the behaviour of the studied
phenomenon for a subsequent week. The predictions were
consequently compared to the relevant one-week-long subset
of the test dataset, and the quality was evaluated using
different criteria. For simplicity and visual consistency in
graphs, the training time windows were the same in both
training datasets. Every time window started with the first
measurement and finished at the time of the i x 100-th

measurement of the first training dataset, corresponding to
a recalculation of the model approximately every 10 hours.

In addition, we adjusted the data for summer time (day-
light saving time). Such changes shift the daily human
routines by one hour with a frequency of once per year,
which is out of the scope of models trained on one year-
long data while affecting the predictions. This unnatural,
politically enforced change is known in advance, and its
detection has no scientific impact.

C. 5 Minutes with 30 Seconds Delay

The first experiment compares the prediction quality of
different models trained by detections gathered approxi-
mately every 5.5 minutes; see Figure 6. The top graph
shows the comparison using the Expected Encounters cri-
terion [20]. EE was calculated similarly to the original
proposal as an ability of a robot to schedule its tasks while
avoiding people in their natural environment [19]. In our
case, to schedule the task of ‘entering the office” while trying
to avoid ‘meeting the lecturer in his office’. The EE graph
provides us with an insight into the lecturer’s behaviour.
Theoretical_random replaces MEANIn this graph. It gives us
information on the expected number of meetings with the
lecturer when the robot does not understand the lecturer’s
behaviour as a time-dependent phenomenon. The value of
the theoretical_random corresponds to half of the number
of lecturer detections in the one-week-long subset of the
test dataset after the prediction time. We can see that the
lecturer’s behaviour substantially differs throughout the year.

The behaviour of the lecturer mainly follows a week-
based timetable as usual in universities. The quality of
predictions of the proposed method NUFTsearch converges
to the original approach NUFTinfoM5 after roughly 3 weeks.
The first semester finishes after 70 days, and we can see that
NUFTsearch and NUFTinfoM5 provide similar predictions.
Then, for the next 3 months, the lecturer is in his office
sporadically, and around day 160, the winter semester starts.
The difference between NUFTsearch and NUFTinfoM5 is
more considerable in the first half of the winter semester.
In the middle graph showing the R’ criterion, we can see
that MEAN gives us ‘nonzero’ values during the first half of
the winter semester, which can be interpreted as a change
in behaviour. NUFTsearch converges to the NUFTinfoM5 in
the EE graph earlier (around day 180) than MEAN to value
0 in the R* graph (after day 200). The gap in the lecturer’s
presence after day 250 corresponds to the Christmas period.

The informed variants that use 5-fold cross-validation to
estimate the order of the model to achieve the best results
in each criterion, NUFTinfoCV, expose quite a large room
for improvement if the criterion is known in advance. The
uninformed variant NUFTautoCV, even with 5-fold cross-
validation, provides predictions with inconsistent quality.
The bottom graph that provides a comparison using tra-
ditional MSE cannot be correctly interpreted alone. With
the knowledge about the lecturer’s behaviour from the EE
graph, we can observe that MEAN provides the best MSE
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Human in the office prediction performance in terms of Expected Encounters (EE), coefficient of determination (R?) and MSE. The

theoretical_random in EE is drawn from a uniform distribution, thus equivalent to using a MEAN model. Measurements in the training data were

taken approximately every 5.5 minute.

in periods during which the lecturer was present less than
5% of the time, which is not a rare situation.

D. 1 Hour with 20 Minutes Delay

Figure 7 shows predictions of the compared methods
trained on detections of the lecturer that were acquired
approximately every 80 minutes with every fifth measure-
ment missing. With the length of training data around 14
days, the prediction quality of NUFTsearch is very similar
to the previous experiment. NUFTinfoM5 converges to its
previous quality more slowly, which gives the proposed
method NUFTsearch an advantage during the third week.

Afterwards, the difference between the quality of predictions
when trained on sparse and dense data is not noticeable for
both NUFTsearch and NUFTinfoM5. NUFTinfoCV is similar
to NUFTinfoM5, which probably reflects the lack of fine-
grained features of the subject’s behaviour in the sparse
training data. NUFTautoCV provided a higher number of
very bad predictions than in the previous experiment.

E. Identification of periodicities

In this section, we wanted to compare the periods found
by the proposed search algorithm with the original approach;
see Figures 8 and 9. The original method uses only a
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theoretical_random in EE is drawn from a uniform distribution, thus equivalent to using a MEAN model. Measurements in the training data were

taken approximately every 80 minute.

limited but correctly chosen subset of candidate frequencies.
It results in fast learning of the most significant periods and
the model’s stabilisation. On the other hand, the proposed
method searches the whole domain for potential period-
icities. For example, once the weekly one stabilises, the
proposed method found a ‘less-than-one-week’ periodicity
(Figure 9), which cannot be detected by the original ap-
proach.

As with most numerical optimisation algorithms, the gain
in speed and universality of the new algorithm is traded off
for precision. This is best seen in the weekly periodicity,
the largest detected and shown in Figure 9. The number

of times the algorithm has seen a whole cycle in the data
grows relatively slowly. The search algorithm has limited
precision in identifying this periodicity and takes a long
time to converge.

FE. Deterioration of Forecast over Time

The previous section (V-E) showed that the estimation of
compositional frequencies by the proposed algorithm does
not usually match the human calendar exactly. Such an
inaccuracy leads to the deterioration of the forecast over
time. To show the impact of this cumulative error, we chose
part of the test data depicting the tested subject’s stable
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Fig. 8. The performance of the search algorithm with dataset size. On
the vertical axis is the time extent of the dataset, and on the horizontal are
the periodicities, which in this figure are limited to a little over one day to
allow for detail. A point corresponds to an identified periodicity by either
our proposed method NUFTsearch with no prior information (red) or by
the original FreMEn method NUFTinfo (blue).
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Fig. 9. The performance of the search algorithm with dataset size, similar
to Figure 8 but on a larger extent of periodicities. On the vertical axis is
the time extent of the dataset, and on the horizontal are the periodicities up
to 8 days long. A point corresponds to an identified periodicity by either
our proposed method NUFTsearch with no prior information (red) or by
the original FreMEn method NUFTinfo (blue).

behaviour. The training data are similar to those used in
the second experiment (Section V-D). We trained models
NUFTinfoM5 and NUFTsearch on constant length parts of
the training data with variable temporal gaps between the
end of training and the start of the test weeks.

We performed two experiments that differed in the length
of training data and the length of the gaps between training
and test datasets. The first one with the length of training
data 3Ms (3 megaseconds, almost 35 days) and temporal
gaps 0 — 12 weeks, and the second one with the training
length 15Ms (about 24 weeks) and gaps 0 — 12 lunar months
(28 days). We trained and tested the models in 80 temporally
shifted scenarios in both experiments.

The parameters of the experiments were chosen concern-

0.8

0.6

0.4 1

0.2

0.0

Expected Encounters Improvement [-]

—0.21

NUFTsearch
[0 NUFTinfo5

T T T T T

T T
0 2 4 6 8 10 12
temporal gap between training and test data [weeks]

Fig. 10. Deterioration of forecast quality in time. The length of training
data is 3Ms. Event prediction on 1 week long test data is performed after
0—12 weeks. NUFTinfoM5 (blue) provides stable predictions for the whole
time. NUFTsearch (red) provides relatively stable predictions for the first
4 —5 weeks, then the model quality decreases due to cumulative error in
periodicities estimation. We detected such models whose prediction quality
is worse than theoretical_random (black line) after 8 weeks.
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Fig. 11. Deterioration of forecast quality in time. The length of training
data is 15Ms. Event prediction on 1 week long test data is performed
after 0 — 12 moths. NUFTinfoM5 (blue) provides stable predictions for the
whole time. NUFTsearch (red) provides stable predictions for the first 4 —
5 months, then the quality of model decreases by approximately 25%.
theoretical_random is depicted as a black line.

ing the easy interpretability of the results. 3Ms of training
data include 25 working days and 15Ms includes 24 working
weeks. The estimation of the length of a week after 35
days (5 weeks) of training in Figure 9 looks inaccurate but
meaningful. All the training and test parts of datasets in
the first experiment (shorter, 3Ms training length) lay in the
part of data depicting stable behaviour of the tested subject
with no gaps in measuring, evading meaningless models and
purposeless tests. The number of test scenarios (80) was
limited by the length 15Mss of training data and the maximal
distance between training and test data of almost 1 year.
For the comparison of the quality of forecast over differ-
ent parts of testing data, we define a novel metric Expected
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Encounters Improvement (EEI):
EEmodel

EEtpeoretical _random ’
where EE,,,q.; is the Expected Encounters of a tested model,
and EEcorerical_random 18 half of the test dataset’s detections,
corresponding to a random model. Using such metrics, while
assuming, for simplicity, that the ‘ideal model’ would avoid
any encounter, we obtain the improvement of the robot’s
scheduling of its tasks using the model compared to the
scheduling without the knowledge of the environmental
dynamics. In other words, the quotient in equation 4 cancels
out the number of detections in the test data, allowing us to
compare models on different parts of the test dataset.

In Figures 10 and 11, we show the distributions of
EEIs calculated for NUFTsearch and NUFTinfoM5 when
forecasting 0 — 12 weeks and 0 — 12 months into the future
while training on 3Ms and 15Ms long training datasets,
respectively. The improvement in Expected Encounters of
NUFTinfoM5 is stable in both cases. In the first experiment,
Figure 10, NUFTSsearch’s improvement of EE is usually
lower than EEI of NUFTinfoM5 but stable for 4 —5 weeks
when trained for 3Ms. We observed some outliers toward
deterioration, which means there were a few low-quality
models. The deterioration follows our expectations from the
previous experiment, Figure 9, where we can see an inac-
curate estimation of one-week periodicity when trained on
a similarly long training dataset. In the second experiment,
Figure 11, EEI of NUFTSsearch is similar to NUFTinfoM5
and stable for 4 —5 months when trained for 15Ms. After 5
months, the prediction quality decreases by approximately
25%. In our specific case, we observed that the length of
forecasting quality’s stability matches the training data’s
length.

EELyoger =1 —

“4)

G. Note on Initialisation

As seen in Figure 12, adding the initialisation makes
the prediction quality of NUFTsearch more stable. The
frequency of quality drops rises with the training dataset’s
length. We speculate that the reason lies in the order of

the angular frequencies detected as prominent. Less frequent
events likely carry a higher error in estimating the correct
value of their frequency. When the search algorithm esti-
mates the value of the dominant frequency inaccurately, the
estimation of the following frequency is probably influenced
by the previous error.

In the previous two experiments, where one can expect
weekly routines, we also tried to initialise the main search
algorithm with the set of periods equal to the set of angular
frequencies Qg as an alternative to the proposed initialisa-
tion, but the quality of predictions was unstable. The reason
probably lies in the high number of local maxima at high
frequencies, as observed in Figures 3 and 2.

VI. ORIGINAL EXPERIMENTS

Here, we compare the performance of the proposed
method in the experiments from the original paper [9], which
focused on the benefits of real-world robotic deployments.
The data covered a real deployment of the robot lasting ten
weeks, where the data was gathered continuously by the
robot. The evaluated methods, NUFTinfoM5, NUFTsearch,
NUFTautoM5, HISTweek, HISTday, and MEAN, vary in
their periodicity estimation as described in Section IV-B.
The experiments originated from the automatic benchmark-
ing system [81] that was partially updated by experiments
found in [17]. The architecture trained many models with
different hyper-parameters on the training dataset and se-
lected the best candidate by performing cross-validation on
the testing dataset. Then it used pairwise t-tests to establish
a ranking of the methods based on their error in prediction.
In Figures 13-16, the results of the statistical comparison
are visualised in graphs, and when method A shows a
statistically significant improvement over method B, there
is an arrow pointing from A to B. Note that the graphs
are formed by pairwise statistical significance tests using
student t-tests. However, due to the issue of alpha inflation
when testing multiple pairs, untested assumptions, and the
low number of samples, these graphs need to be understood
as a complementary, indicative visualisation of results.



A. Door state

In the first experiment, we test the methods’ ability to
predict a one-dimensional binary variable that represents the
condition of a door, whether it is closed or open, located at
a university office. An RGB-D camera collected the data
describing the door state by checking the occupancy of a
specific metric box at the doors. The training dataset was
gathered for 10 weeks, and the testing dataset consists of
9 individual subsets, each one week long. The data was
collected indoors by a stationary active sensor which utilised
structured light to obtain the depth information. Therefore,
the data extraction was relatively straightforward compared
to a situation where door detection is performed by a robotic
platform [84]. The only significant noise in the data was
caused by people passing through the opened door, causing
false detections of the door state as closed. While the door
is open or closed randomly, it is more probable that the
door is open during the office hours rather than at night.
The probability of the door being open at a particular time
was estimated and forecasted by FreMEn [73].

In order to evaluate the prediction capabilities of the
methods, we used as the metric the mean square error € of
the predicted state by the individual temporal models p(¢) to
the testing ground truth state s(¢) over all evaluation times
in the set 7' as

_ Tier (p(t) —s(1))?

€
7|

104

Mean squared error [-]
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Fig. 13. Door state prediction error. The top figure shows the MSE for the
training (week 0) and testing (weeks 1-9) datasets. An arrow from model
A to model B in the bottom figure indicates that A’s prediction error is
statistically significantly lower than for model B.
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In Figure 13, the results demonstrate that NUFTsearch
achieves similar or better results than the state-of-the-art
method NUFTinfoM5. However, the HISTweek method with
a bin for every hour in a week also performs similarly to
NUFTinfoM5. The results of NUFTsearch show that even
without knowing in advance the present periodicities, the
method can successfully learn them and model the temporal
behaviour. The high quality of NUFTautoM5 predictions
is based on the fact that the length of the training data
is exactly 10 weeks. The set of angular frequencies Qg0
derived from the length of data is a superset of Qjeg C
Qur0- Contrary to Section V, the setting of this experiment
does not provide correct insight into the difference between
NUFTinfo and NUFTauto. However, we can conclude that
it is possible to exchange the original approach with the
proposed one without any loss of quality of predictions.
Similarly to the conclusion in Section V-F, the deterioration
of NUFTsearch model trained on 10 weeks long data is not
noticeable during the following 9 weeks.

B. Topological localisation

This experiment examines the ability of a robot to localise
using only images captured by its onboard camera, given
that the robot is also provided with appearance models
learnt in advance on images of these locations. The appear-
ance models are helpful, especially if they can capture the
variations in the environment [85], [9], [48], [3] because,
over time, the appearance of the locations changes as they
are located in an open-plan office at a university. This
testing scenario aims to test the localisation robustness
using the temporal models predicting the occurrence of
individual image features in the environment. A mobile
robotic platform obtained the visibility information about
each feature, a robot SCITOS-GS5, which captured images
of eight different office locations for one week with a 10
minutes interval between individual images from the same
place. Thus the training dataset consists of more than 8000
images. Three testing datasets were collected with the same
procedure described but only during one-day-long periods,
which yielded 1152 new images for each dataset. Each
testing dataset was collected a week, three months and a
year after the initial training dataset collection.

The BRIEF descriptor method [86] was used to extract
the image features because it achieves high robustness to ap-
pearance changes [87]. The temporal models were trained on
the features of the same place. The features were matched,
and their occurrence in time was assessed from their times-
tamp. Through this procedure, dynamic appearance-based
models were generated for each place; thus, they could
estimate the likelihoods of a feature appearing at a specific
time.

In order to test the models, the robot uses them to estimate
the probability of all features occurring at individual places
given the timestamp of the testing image. The robot’s current
location is estimated by first taking the n features with the
highest probability for each place in the office and matching
them to the features in the testing image. Then, the place



with the most matches is considered the current location.
The applied metric for comparing the tested methods is the
percentage of false localisations in the whole testing dataset.
In Figures 14-16, there is a relation between the mean error
of localisation and the number of features n considered by
the methods for localisation.
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Fig. 14.  One day after the training of the models. Temporal model
performance for feature-based topological localisation. The left figure
shows the dependence of the localisation error rate on the number of
features predicted by a given temporal model. An arrow from A to B on
the right indicates that A’s localisation error rate is statistically significantly
lower than that of model B.
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The results in Figure 14 present the performance of the
methods evaluated on a testing day immediately follow-
ing the training week dataset. The method NUFTinfoM5
achieves the predictive capability outperforming all the other
methods. NUFTsearch together with HISTday performed
a little bit worse but comparably to NUFTinfoM5 and
distinguishably better than the other methods.
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Fig. 15. Quarter of a year after the training of the models. Temporal
model performance for feature-based topological localisation. The left
figure shows the dependence of the localisation error rate on the number
of features predicted by a given temporal model. An arrow from A to B on
the right indicates that A’s localisation error rate is statistically significantly
lower than that of model B.

The testing dataset, evaluated in Figure 15, was collected
77 days (approx. 3.5 months) after the training week.
NUFTinfoM5 and HISTday performed better than the others
but needed more features to lower their error rate to similar

values as in the first scenario. NUFTsearch performed
significantly worse, and, contrary to the previous scenario,
even worse than HISTweek.
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Fig. 16. One year after the training of the models. Temporal model
performance for feature-based topological localisation. The left figure
shows the dependence of the localisation error rate on the number of
features predicted by a given temporal model. An arrow from A to B on
the right indicates that A’s localisation error rate is statistically significantly
lower than that of model B.

The last evaluation was assessed on data gathered for
392 days (approx. a year and a month) after the training
period. From the seasonal point of view, we could expect
similar features as in the training data. Figure 16 shows
that performances of NUFTinfoM5 and HISTday were not
discernible and lower than in previous scenarios. NUFT-
search was similar to MEAN but better than HISTweek and
NUFTautoM5.

We can see that immediately after the training of the
models, NUFTinfoM5, NUFTsearch, and HISTday provide
similarly good predictions. Because the training dataset is
relatively short (only 7 days), the error caused by estimating
the frequencies by NUFTsearch accumulates, which lowers
the quality of the predictions after a more extended period of
time. The success of HISTday in all three testing scenarios
shows that the one-day periodicity is so dominant that it
is probably not necessary to model anything else to obtain
the high prediction quality in this experiment. However, the
change of order in the middle testing scenario (localisation
task after 3.5 months) compared to the other two gives an
impression that there is another dominant periodicity that
needs to be modelled for correct long-term predictions. The
hypothetical unknown periodicity is not part of the training
dataset and was probably not expected nor targeted by the
authors of the experiment. It would be interesting to have
much longer data of this kind.

C. Note on Quality of Methods’ Comparison

The statistical evaluation of the results raised a few
questions. To compare the performance of individual meth-
ods, the environment first trained models with different
parameters on training data, cross-validated them on testing
data, and then chose the best-performing setting for the
comparison on the testing data. Such an approach must
be considered when implementing methods for comparison,
which complicates adding new methods into the framework



for experimental evaluation. As a result, it does not produce
a complete picture of the methods’ performance, as the
method developed for a broader scope will tend to under-
perform.

It is necessary to point out that the methodology behind
the bubble graphs should be reconsidered. First to note
is that each experiment uses t-test components and does
not consider testing whether any assumptions have been
met; much better would be to use the Wilcoxon signed-
rank test, which is a non-parametric variant—and, indeed, in
subsequent works of the original authors, this was used [88],
[89], [90]. The reader might also notice that each experiment
is originally performed at a different significance threshold
a. The significance levels chosen for the original experi-
ments were 5 and 10 for the “door state” and “topological
localisation” experiments, respectively.

This further manifests itself in the last problem such
an evaluation has, which is the issue of multiple com-
parisons [91]. As the test is performed pairwise (and bi-
directionally) between all methods (for m methods n = m?—
m comparisons), the probability of a Type I error in the case
the methods are actually performing similarly is 1 — (1 — )"
for independent tests. In such a case of m = 6 similarly
performing methods, independent testing on ¢t = 0.1 would
be expected to get approximately a 95.8% chance of an
error and 78.5% chance on o = 0.05. To avoid incorrect
interpretations of the statistical tests, the bubble graphs are
accompanied with charts showing the actual performance of
the methods in each case. This can indicate cases where the
difference in performance of two particular methods is close
to the confidence level.

The statistical tests performed here to create one figure
are not independent, but quantifying their dependence would
be challenging and is outside this work’s scope. In general,
such approaches to comparison should be performed with a
carefully adjusted o [92].

VII. ANALYSING DATASETS WITH NO EXPERT
KNOWLEDGE

This section qualitatively analyses the proposed method
and its capabilities in scenarios without prior knowledge
of the expected periodicities. All the previous works tested
the methods exclusively on robotic datasets from the long-
term autonomy domain. It makes sense as that is the
domain for which these methods were developed. However,
it brings inherent bias because most such applications are
usually tested in environments with two significant sources
of change, i.e. people and nature on Earth. People and
natural cycles then cause the most dominant periodicities to
be day-night changes, weekly cycles or other closely related
ones. As a result, the methods presented in previous research
are typically tailored to detecting these periods.

To eliminate the influence of these two well-known and
studied processes, we searched for a domain to test the
generality of our methods. We therefore chose the space
domain as robotic interplanetary exploration is currently
being studied. The space technology domain presented us

with an enormous number of possible datasets for testing
and getting a better understanding of our methods. By
principle, these datasets are not affected by human habits,
and the rotation of Earth—which, of course, causes the day-
night cycles—can also have no or negligible influence. For
these reasons, we searched and chose datasets of phenomena
that are naturally periodic, bounded and measured in space.
We have no expert knowledge of the context of the data we
found. For the sake of simplicity, we test only the MEAN,
NUFTinfoM5, NUFTautoM5, and NUFTsearch methods in
this section.

A. Predicting temperature on board VZLUSAT-1 nanosatel-
lite

First, we experimented with data from the VZLUSAT-
1 nanosatellite [93] launched in 2017 to a 510 km low-
Earth orbit. The main goal of this mission is as an in-
orbit demonstration and testing platform for several new
technologies, like specific radiation shielding housing. The
satellite is equipped with two sensory payloads, the FIPEX,
which is part of the QB50 mission and measures molecular
and atomic oxygen density, and Timepix measuring the
space radiation along its orbit.

We chose to use the measurements from the temperature
sensor of the Timepix experiment [94] as the data are very
simple and can be expected to be highly periodic due to
the satellites’ regular orbit. The dataset [95] contains about
three and half years of data, but it is very sparse—it mainly
contains day-long bursts of continuous data and then several
days with no measurement. We do not know the reason for
the missing data, but it provided us with natural splits of
the dataset for evaluation. We split every series into the first
70% of data for training and the rest for evaluation; we kept
only those where the number of training points exceeded
a hundred. The evaluation was done regarding prediction
quality measured by standard MSE and R2 metrics.

The results of this experiment are captured in Figures 18
and 19 It is clear that when predicting the data, NUFTsearch
almost always gives the most accurate predictions with
R? always greater than O but mostly reasonably high. In
contrast, the other methods—except for NUFTautoM5—
do not even get above 0, while simple MEAN beats the
NUFTinfoM5 method significantly. It is also worth noting
that the situations where the new method does perform
generally worse correspond to those where even MEAN
has poor, negative R”, which indicates that the data are
significantly different to the training situation. To illustrate
the behaviour of the methods, we also include an example of
training reconstruction and subsequent prediction in Figure
17.

In most cases, the NUFTsearch with no prior knowledge
identified only periodicities within a minute of 94.5 minutes,
which is the period of orbit of the satellite itself. Both
methods could detect this because the satellite oscillates
between the light and dark sides of the Earth, corresponding
to higher and lower temperatures. However, the surprisingly
bad results of NUFTinfoM5 in metrics evaluation are caused
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by it behaving completely chaotically concerning the data,
as is also visible in Figure 17.

B. Interpretability of solar wind properties in L1 Lagrange
point

The second dataset we tested our methods on was from
NOAA'’s Deep Space Climate Observatory (DSCOVR) satel-
lite [96], which is orbiting the Sun in the L1 Lagrange
point—1.5 million km from Earth, located in gravitational
equilibrium between Sun and Earth—and provides real-
time measurements of solar winds. Its primary purpose is
to enable space weather forecasting and provide an early
warning system for cases of interplanetary coronal mass
ejections, i.e. geomagnetic storms that can be detrimental
to the electrical equipment orbiting the Earth as well as to
those on the ground. The satellite became operational in
2016 and measured many quantities related to solar winds,
like the vectors of the velocity of protons and alpha particles
in the wind, the density of these particles and more.

We chose to only deal with protons and try to estimate
periods in their speeds and densities. Both datasets represent
very different quantities with entirely different scales. The
literature on this topic talks about long periodicities we are
not used to seeing in human-populated environments. Mod-
elling these phenomena represents the situation where an
autonomous system measures and analyses a new, previously
unknown quantity of arbitrary periodic behaviour.

The data is sampled every 20 seconds. Analysing such
dense data over long datasets demands excessive compu-
tational power. As we expect relatively long periods in the
data, we aggregated the data by averaging over 4-hour and 8-
hour windows for proton speeds and densities, respectively.
The window lengths were chosen arbitrarily. The original
dataset also contains several gaps. We split it and took the
first part, containing approximately one year of data.



Detected periodicities

NUFTsearch 13.76 days, 25.75 days, 9.02 days, 13.60 days, 27.36 days
NUFTautoM5
NUFTinfoM5  7.00 days, 0.16 days, 0.08 days, 0.17 days, 2.33 days

TABLE III
PERIODICITIES DETECTED IN THE PROTON SPEED. BOLD VALUES ARE
THE CLOSEST TO THE ONES PREVIOUSLY ESTIMATED USING A
PERIODOGRAM.

Detected periodicities

NUFTsearch 13.97 days, 26.19 days
NUFTautoM5  14.88 days, 6.61 days, 29.75 days, 9.92 days, 19.83 days
NUFTinfoM5  7.00 days, 0.08 days, 0.11 days, 0.11 days, 0.35 days

TABLE IV
PERIODICITIES DETECTED IN THE PROTON DENSITY. BOLD VALUES
ARE THE CLOSEST TO THE ONES PREVIOUSLY ESTIMATED USING A
PERIODOGRAM.

The question we wanted to answer using these datasets
is whether the tested methods can detect meaningful and
interpretable periodicities of unknown phenomena. The in-
terpretability of the model’s parameters allows us to predict
and learn useful information about some periodic phenom-
ena. As periodicities are notoriously hard to learn using, e.g.
gradient descent methods, our method can also be used to
give other machine learning algorithms reasonable priors.

The solar wind research on large datasets provided infor-
mation about 7, 9, 14, and 27 days long short-term period-
icities [97], which were estimated using a periodogram. In
Tables III and IV, we provide lists of detected periodicities
in the data by each method. The bold font highlights the
results closest to the prior known frequencies. We can see
that while NUFTsearch did find a variety of periodicities,
NUFTinfoM5 found only one period—one week, which is
by coincidence part of its prior. The periodicities detected by
NUFTsearch correspond to 3 and 2 out of 4 known periodic-
ities in proton speed and density, respectively. NUFTsearch
did not detect the 7 days long period for some unknown
reason. The results show that the model’s parameters are
explainable.

VIII. DISCUSSION
A. Temporal Structures

In recent years, the main objective of papers that re-
place stationary probability with a Fourier transform-based
time series modelling of events in robotic maps was to
demonstrate that using periodicities is beneficial for the
autonomous planning of different robotic tasks. Although
the benefit was evident in the long-term deployment of
robots in human environments [52], the theoretical results
in the experiments were, sometimes, not too sound. For
example, in [17], the authors compare the prediction quality
of FreMEn versus the average values over the spatio-
temporal map of human flows with success. However, the
error reduction was between O and 0.1%. Moreover, the
model that predicts 0 everywhere was omitted. The reason

was studied in [38] and discussed in [19]—when a human

29.88 days, 6.64 days, 14.94 days, 8.54 days, 59.75 days is understood as a point in space and time, the event, human

detected at coordinate (x,y,?), is very rare compared to the
large number of cells in a 4D spatio-temporal map. The
authors of [19] therefore proposed a new type of criterion,
Expected Encounters, that compares the predictive quality
of methods based on their ability to plan robotic tasks, i.e.
to minimise the number of potential collisions with humans
in this case. Their results still showed the superiority of
FreMEn-based methods, mainly STeF-Map [14].

As of now, we believe that the question ‘whether the
modelling of periodic events in human-populated areas is
beneficial for deployed autonomous robots’ is successfully
answered. The authors of [20] claimed that the human-
populated environment does not contain only spatial struc-
tures like walls but also temporal structures derived from
human routines. Those routines are based on work manage-
ment, directly connected to the calendar and clock. Similarly
to any worker, it is beneficial for a robot to understand the
concept of calendar and clock. In the case of the original
implementation of FreMEn, this motivated the usage of the
set of angular frequencies Qg3 = {277:k/604800],~,£81 (Sec-
tion II-C). We speculate that there are different temporal
structures, not only the one derived from the weekdays; we
believe that autonomous robots should have the ability to
estimate a “local calendar and clock™ that is natural for the
environment in which they are deployed.

B. Toward Autonomous Robotics Paradigm

Defining our work is the focus on the long-term deploy-
ment of autonomous mobile robots in natural environments
that are not designed for robots’ operation. One of the
issues such robots have to face is the presence of the
aforementioned temporal structures. The temporal structures
can be modelled by Temporal MoDs, which have proved
their usability in the last decade. A crucial part of FreMEn
is its ability to generalise over cyclostationary processes—
observing changes in the environment and building models
that can forecast the expected state of the environment
in future. The generalisation directly depends on its abil-
ity to find a specific set of dominant frequencies in the
observed dynamics, which depends on a carefully chosen
set of candidate angular frequencies—in other words, on
domain knowledge of the designers. Moreover, the number
of selected dominant frequencies, order o, which defines
the complexity of the explanatory model, also relates to the
performance and is affected by the designer’s expectations
or the method’s implementation. These parameters lead
to environment-specific implementations of an otherwise
autonomous building of a suitable environmental model.

In this work, we focus on the estimation of the set of
dominant angular frequencies directly from data without
designers’ intervention. The search for the dominant fre-
quencies in the relevant robotic data is not straightforward
due to irregularities in the measurements and the fact that
the length of training data is neither related to the frequency
of the observations nor the frequencies in the data. We



propose an iterative sampling-based search for a frequency
dominant with respect to other frequencies. The iteration
terminates when the search cannot assess a new prominent
frequency. The proposed approach avoids local extremes
in amplitudes, provides a termination criterion, and has
asymptotic complexity O(n). A side effect of the spectral
features being derived directly from the data is that the
algorithm can be applied to time series with any (but
consistent) time units. Such facilitation, together with the
automatic nature of the model parameters estimation, then
makes it more robust to errors brought by human operator
expectations and directly applicable to autonomous robots
operating in unaccustomed environments.

The proposed search algorithm has multiple hyperparam-
eters that were set manually. The search algorithm was
evaluated only in a limited set of experiments and, therefore,
is presented as a proof of concept. Still, it proved effective
in our experimental evaluation. Using the method, the robot
can learn the temporal structure of its environment only from
its own observations, without any external input from a hu-
man. Incorporating temporal structures into a robot’s system
makes the robot more integrated into the environment and
more effective in providing its service. We believe that the
proposed approach—the search for dominant frequencies—
is a step forward in the autonomous robotics paradigm, as
a robot can discover temporal patterns with frequencies not
expected by the robot designer. Therefore, it would allow
robots to be deployed in environments with unknown, but
cyclic temporal dynamics.

C. Assumptions and Limitations

The contribution of this paper also consists of a deep
analysis of the spectral decomposition used in FreMEn. We
described its assumptions, identified its limitations, and pro-
posed an alternative approach that overcomes the identified
shortcomings. Here, we highlight the assumptions of our
method and the limitations we are aware of as follows:

1) The method can model only cyclostationary processes
that do not change during the robot’s deployment.
This is a strong assumption when considering, for
example, biological agents such as pedestrians but
also animals [98], [99]. Since such applications were
also shown to improve the robot’s operation, we
know that this assumption can be violated under some
conditions, but we have not studied this in detail.

2) The method considers only candidate periodicities
between twice the usual time between observations
and half the data length, which is related to the
Nyquist—-Shannon sampling theorem. Therefore, the
frequency spectrum of recognisable processes is lim-
ited by the frequency of observations and the duration
of their collection.

3) Due to the lack of appropriate datasets, we have not
tested the proposed method on processes consisting
of multiple dominant frequencies with a ratio greater
than 2 orders of magnitude.

4) In common with other current prediction methods
for enabling long-term autonomy, a general limitation
is that our method does not have a deep semantic
understanding of the underlying processes causing
the observed periodicities, rather it is trying to learn
temporal structures from correlations in the data. This
might be addressed in future work, e.g. using some
kind of explainable Al

However, a more comprehensive list of the method’s lim-
itations will come from its application to more practical
problems.

D. Scope for Applications

FreMEn-based methods were applied in environments
directly affected by the rotation of the Earth and its illumina-
tion from the Sun. In most cases, the second most distinctive
generative process in these environments was derived from
human working routines which follow the calendar and,
as a consequence, strengthen the influence of the Earth’s
synodic day. The methods based on FreMEn with the set
of candidate frequencies derived from the week and day
provided overall high-quality forecasts. However, it is not
obvious whether such environments also include different
dynamics. The reason behind this doubt comes from the
two following issues:

1) quite commonly, FreMEn-derived forecasts are suc-
cessfully compared to MEAN:-like (static probabil-
ity) forecasts—however, in section V-A, the method
NUFTautoCV_EE (Figure 5, bottom graph) with in-
tentionally unsuitable set of candidate frequencies also
provided a better forecast then MEAN, see Table II,
and,

2) the usual elements in evaluation are directly bound to
humans or illumination (human presence in the office,
open or closed office door, visibility of image features
and alike).

On the other hand, the proposed search approach allows for
modelling dynamics with unexpected spectral features and
building a Temporal MoD consisting of dynamics generated
by mutually independent processes. We can speculate that
using our approach even in university office-like environ-
ments can avoid an unexpected error in MoD, which might
thwart the long-term deployment of autonomous mobile
robots. We can avoid situations caused, e.g. by the industrial
plants using different types of rotating shifts that influence
human routines, and the original FreMEn has to be reimple-
mented accordingly to be successful [42]. To conclude, we
believe that the application of the proposed approach will
be more successful in human-populated environments, for
which the original FreMEn was fine-tuned.

We expect relevant applications in places on Earth not
directly influence by the Sun’s illumination (like deep sea),
where anomalous processes dominate (artificial systems,
phytotrons or foundries as in [42]), where the dominant
processes are unknown or under research (like a colony of
social insects), or in extraterrestrial places.



In particular, honeybee hives are currently being studied
using robotic systems in the project RoboRoyale [100].
Possible expected periodical phenomena include bee hatch-
ing time and oscillating of bee-hive weight derived from
changes in the surrounding foliage and the growth of differ-
ent pests that affect the colonies. Other biological systems
might include disease spread, recessive gene manifestation,
or human behaviour tied to slow-acting hormones rather than
circadian rhythm or working hours.

On the other side of the spectrum of studied phenom-
ena is extraterrestrial exploration, a domain of autonomous
robotics that cannot utilise the knowledge of a calendar.
For example, prediction of local environmental changes, like
solar flares or illumination changes at random space bodies,
could save instruments from destructive forces and help to
plan tasks of extraterrestrial robots—similar to the robots
employed on the planet Earth while taking advantage of the
original FreMEn approach.

E. Comments on Results

We propose a generalisation of FreMEn that does not
use predefined angular frequencies derived from a human
calendar but searches the space of angular frequencies for
the most prominent ones in the data. We showed in the
experiments that the proposed method needs around a 4
days long dataset of a phenomenon, whose periods are
derived primarily from one-day and one-week periods, to
provide predictions one week into the future comparable to
those of the original method that includes an optimised set
of candidates of angular frequencies. The method needed
around a 3 weeks long dataset to stabilise and not show
negative deviations. The predictions of both methods for
one week into the future were comparable on an almost
one-year-long dataset. However, in situations of significant
changes in the number of detections of the phenomenon,
the error of the proposed method compared to the original
approach was raised.

The proposed method provided predictions of better qual-
ity than the original one in the experiment, in which the
training binary dataset was 10 weeks long, the prediction
quality was tested on the subsequent 9 weeks, and the
phenomenon was also derived from one-day and one-week
routines. However, the situation was much more complicated
on a week-long binary dataset with the most dominant one-
day periodicity. The prediction of the proposed method for
the next day was comparable but worse than the original
one. Three and thirteen months later, the prediction of
the proposed method was obviously worse. It showed the
weakness of the dominant periodicity estimation from data.
As the periodicity of one day was estimated with some error,
the error accumulated, and the quality of the predictions was
reduced.

A very different situation was found in the experiments
with the data whose phenomenon was not derived from
the calendar. The proposed method created an incomparably
better model than the original approach and provided sat-
isfactory predictions. The original method was not able to

provide better predictions than the mean, which exposed its
weakness targeted by the proposed method. Nevertheless,
visual analysis of the found periods showed that these
periods are interpretable and can provide insight into the
phenomenon’s behaviour.

The experiments showed that the prediction of the pro-
posed method is usually worse but comparable to the origi-
nal method when applied to phenomena derived from one-
day and one-week periods. The predictions of the proposed
method on the different types of datasets were consistently
good, while the original method failed. We showed that the
proposed improvement of FreMEn increased the variety of
environments where an autonomous robot can successfully
operate without prior knowledge of the underlying processes
and solve a wide variety of tasks similar to those tested
in the human environments. Regarding the computational
efficiency, we compared our search-based method to the
original FreMEn using Python 3.7 and the fiNUFFT li-
brary [82], [83]. Although both methods have identical
asymptotic complexity O (n), the search-based method was
slower in our experiments than the original FreMEn [9] by
an order of magnitude. However, it is still computationally
tractable—the proposed method processed a time series of
100,000 values in about 1 second.

IX. CONCLUSION

Frequency Map Enhancement, its applications, and its
variants changed the understanding of robotic maps from
static ones that try to suppress the changes in an environment
to dynamic ones that provide information about periodic
events in an environment and give autonomous robots the
ability to exploit such dynamics. We proposed an improve-
ment of this approach that focuses on the automatic search
for dominant frequencies in the robot’s observations defining
the dynamics of the environment. The improvement does not
need prior knowledge to uncover the generative processes
that form an environment’s dynamics, allowing autonomous
robots to create spatio-temporal maps of unaccustomed and
novel environments.

We evaluated the models provided by the proposed
method in three different experiments. The first experiment
compared the learning process of the original and proposed
version of modelling the dynamics of an environment with
known generative processes, giving us a view of the price of
generalisation in specialised tasks. The second experiment
evaluated the quality of the model given by the proposed
method in tasks where the original approach previously
proved its dominance. The third experiment consisted of
applying the methods to the data whose dynamics were
generated by processes unrelated to human working habits
or day-night changes, showing the proposed method’s ability
to model unfamiliar dynamics. We showed that the proposed
concept of the automatic search for dominant periods in au-
tonomous robot observations provides comparable models in
specialised tasks, while substantially extending the possible
applicability of Frequency Map Enhancement.
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