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Abstract: Advanced behavioural studies for social insects such as honeybees demand high-
precision mechatronic systems to perform uninterrupted observations. This paper proposes
a robust framework to attenuate the vibration generated by the mechatronic part of the
Autonomous Robotic Observation and Behavioural Analysis (AROBA) system. The vibration
attenuation method proposed in this paper incorporates the output feedback H∞ approach
for input shaping of the acceleration commands to the drive system. The controller is designed
based on the state space system identification results for an unknown order linear time-invariant
(LTI) model. The output feedback H∞ is applied to compensate for the modelling uncertainties
while regulating the vibration. The results showcase the robust performance obtained from
the experiments with the AROBA mechatronic system. The closed-loop system achieved an
average vibration signal power below -60 dB which is significantly lower than the value that is
not disturbing the bees’ behaviour according to the studies in this field.

Keywords: Robotic observation, Output feedback H∞, System Identification, Vibration
control,

1. INTRODUCTION

Recent advancements in robotics open new ways for robot-
insect interaction according to Ulrich et al. (2024); Janota
et al. (2024). However, Romano et al. (2019, 2024) showed
that robot-animal interaction demands resolving many
challenges. According to Stefanec et al. (2022); Barmak
et al. (2023), robotic technology can transform such bio-
logical studies as the robots can observe insects in their
natural habitat continuously and determine their collec-
tive behaviour. For a continuous behavioural analysis, a
novel robotic system was introduced in Rekabi-Bana et al.
(2023); Ulrich et al. (2024); Blaha et al. (2024), which is
an observation and interaction mechanism for long-term
studies on honeybee colonies. In addition to the criteria for
structural service life, according to Stefanec et al. (2021),
the biological experiment demands reducing the vibration
level as honeybees react to the vibration transferred to the
hive. Based on previous studies such as Hrncir et al. (2019),
if the transferred vibration intensity in the frequency range
of 0 to 50 Hz is prominent, it might interfere with the
honeybee’s behaviour. For instance, one of the communica-
tions that honeybees show is the waggle dance, which has
an average frequency of 14.6 Hz based on  Lopuch and Tofil-
ski (2017). Therefore, the mechatronic system must atten-
uate the generated vibration between 10 Hz and 20 Hz
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significantly. Although the implemented passive vibration
absorption technique in Ulrich et al. (2024) reduces the
vibration significantly, an active method enhances the vi-
bration attenuation for biological experiments, structural
health, and image quality (Žampach̊u et al., 2022). On the
other hand, a feed drive mechanism needs sophisticated
control methods to attenuate the vibration while following
the desired position and velocity commands based on Yang
et al. (2020); Balaji and Karthik Selva Kumar (2021);
Lu et al. (2018). Although recent studies such as Zhu
et al. (2016) introduce different approaches to identify
appropriate models, particularly for the ballscrew systems,
based on nonlinear approaches presented in Liu et al.
(2023) or evolutionary optimisation demonstrated in Li
et al. (2023), those algorithms cannot encounter the effect
of other parts such as supporting units, joints, or housings
in the resulting vibration. On the other hand, the control
methods that are applicable for dissipating the vibration,
such as H2 synthesis controller for damping enhancement
presented in Shirvani et al. (2022), the linear quadratic
regulator for high bandwidth control presented in Dumanli
and Sencer (2018), and the µ synthesis controller proposed
in Zhu et al. (2023) rely on accurate linear time-invariant
models that describe the system’s behaviour. Therefore,
the vibration control performance depends not only on the
control algorithm but also on the model’s accuracy utilised
for the control design process as described in Rekabi-
Bana et al. (2024). This paper proposes a new control
framework to address the uncertain model obtained from
system identification. The proposed framework comprises



Fig. 1. The autonomous observation system collects the queen honeybee’s behavioural information. (a) The mechatronic
system and its main components, (b) the mechatronic system in its real workspace with the observation hive, and
(c) the CAD model of the experiments for data collection from the queen.

an output feedback H∞ approach that employs an esti-
mated Linear Time Invariant (LTI) model to determine
an acceleration command for regulating the predicted vi-
brations (Yalçın and Erkan, 2021; Rekabi et al., 2020).
On the other hand, to determine the LTI model for the
controller design purpose, the unknown structured state
space system identification approach is employed due to
its capability for model order and parameter identification
simultaneously, as demonstrated in Soares Jr and Serpa
(2022). This method showcased its capability for modal
analysis in different robotic applications and validated its
performance for different dynamic systems such as those
presented in Pappalardo et al. (2023). Therefore, the main
contributions of this paper are as follows:

• Incorporating the Multivariable Output-Error State
Space (MOESP) identification method that deter-
mines the LTI model to estimate the vibration gen-
erated by the mechatronic system according to the
acceleration in both the horizontal and vertical axes.

• Development of a new robust control framework
based on H∞ method, which employs an uncertain
LTI model to attenuate the vibration and compensate
for the modelling uncertainties.

2. AUTONOMOUS OBSERVATION MECHANISM

The AROBA system comprises the mechanical design and
development of a robust drive system for the actuation.
The schematic diagram presented in Fig. 1 describes
different components of the system and how they interact
with each other to fulfil the objectives.

The mechanical system includes an aluminium frame, a
ball screw feed drive system for vertical motion, and
a horizontal linear actuation unit. As demonstrated in
Fig. 1, the AROBA system has two cooperative robots
that simultaneously cover two sides of the observation
hive to track the queen and explore other events, such as
larva growth in the cells. In this paper, an input shaping
controller was developed to reduce the vibration generated
as much as possible to capture high-quality images. That
system is structured as follows:

• The state machine to switch between the acceleration,
deceleration, and constant speed modes.

• A robust controller to regulate the vibration output
of the system.

3. STATE MACHINE FOR THE DRIVER

The presented state machine in Algorithm. 1 was employed
to apply variable acceleration in each working state. The
state machine considers four states and the transition rules
between those states.

Algorithm 1 Driver State Machine
1: while true: do
2: State: Idle
3: if ∆d ≥ dl then Condition to transition from Idle
4: vtgt ← vcmd, State: Acceleration
5: end if
6: State: Acceleration
7: if ∆d < Darv then Transition to Deceleration
8: vtgt ← 0, State: Deceleration
9: else if |∆v| ≤ vlths then State: Constant Speed

10: end if
11: State: Constant Speed
12: if ∆d < Darv then Transition to Deceleration
13: vtgt ← 0, State: Deceleration
14: else if vtgt ̸= vcmd then State: Acceleration
15: end if
16: State: Deceleration
17: if |v| ≤ vlths then State: Idle
18: else if ∆d ≥ 3Darv then Transition to Acceleration
19: vtgt ← vcmd, State: Acceleration
20: end if

21: end while

In Algorithm. 1, v ∈ R stands for the velocity in each axis,
vtgt ∈ R is the target velocity, vcmd ∈ R is the velocity
command, ∆v = v−vtgt, v

l
ths ∈ R is the threshold level for

the velocity error, dl ∈ R is the dead zone level for the idle
mode, ∆d ∈ R is the distance to the position command,
Darv ∈ R is the arrival distance which is determined

as Darv = 1
2

v2

acom
, where acom ∈ R is the acceleration

command.

4. SUBSPACE SYSTEM IDENTIFICATION FOR
MODELING

The following linear state-space model is considered to
describe the vibration generated by the mechanism.

ẋ = Ax + Bu , (1)

y = Cx + Du ,

where x ∈ Rn is the state vector, n represents the system’s
order, u =

[
acx acy

]
∈ R2 is the control vector and is



equivalent to the acceleration commands, which are stated
as acx and acy. Also, y ∈ R3 is the output vector and is
equivalent to the vibration measurement in the x, y, and
z directions at the sensor location. The state transition
matrix A ∈ Rn×n, the control transition matrix B ∈
Rn×2, the state observability matrix C ∈ R3×n and D ∈
R3×2 which represents the control signal’s contribution
to the observation are the matrices to describe the state
space model in Eq. 1. This paper employs the MOESP
algorithm to estimate the system’s matrices based on the
data collected from the experiments. According to Favoreel
et al. (2000) and Van Overschee and De Moor (1994), the
following equation estimates the system matrices based on
the inputs and outputs collected from the experiment:

argmin
Â,B̂,Ĉ,D̂

∣∣∣∣[Γ†
i−1Zi+1

Yi|i

]
−
[
Â B̂

Ĉ D̂

][
Γ†
iZi

Ui|2i−1

]∣∣∣∣ , (2)

where, [̂.] represent the estimated value of the argument,
[.]† demonstrates the Moore-Penrose Pseudo inverse oper-
ator. The block Hankel matrices Yk|t and Uk|t determine
the measurement and input matrices between the time
steps k and t. Also, Zi is the projection matrix defined
according to the following equations:

Zi = Yi|2i−1S
′
i(SiS

′
i)

−1Si , Si =

[
U0|i−1

Ui|2i−1

Y0|i−1

]
, (3)

where [.]′ represents the transpose of the matrix. Further-
more, the matrix Γi which is the extended observability

matrix and is equivalent to Λ1Σ
1
2
1 where the matrices Λ1

and Σ1 are determined from the singular value decompo-
sition as follows:[

L1
i L3

i

] [U0|i−1

Y0|i−1

]
=
[
Λ1 Λ2

] [Σ1 [0]
[0] [ε]

]
V′ , (4)[

L1
i L2

i L3
i

]
= ZiS

†
i ,

L1
i ∈ Rli×mi, L2

i ∈ Rli×mi, L1
i ∈ Rli×li ,

where [ε] represents the singular values that are insignif-
icant compared to other elements in Σ1. Therefore, the
main role of Σ1 in the identification process is to determine
the system’s order according to the variations in singular
values. Accordingly, Eq. 2 can be solved considering the
model’s order identified in Eq. 4 and applying the numer-
ical methods presented in Van Overschee and De Moor
(1994) to determine the system matrices.

To obtain the best results for system identification, the
input signal should excite the structure properly and
make outputs that can be processed by Eq. 3 and Eq. 4.
Therefore, the following characteristics are considered to
generate the input signals for better excitation:

• A square signal with a constant amplitude and a
duration from a uniform distribution between 0.1 s
and 10 s.

• The time of action for each command is selected
randomly.

The generated signal is the acceleration input to the state
machine, and the position and velocity inputs are deter-
mined according to the acceleration input integration. The
block Hankel matrices in Eq. 3 and Eq. 4 are determined
based on the acceleration input signal to estimate a consis-
tent model for the system, which includes the effect of the

state machine with all nonlinear actions such as saturation,
dead zone, and rate limits.

5. H∞ CONTROLLER DESIGN

Considering the Linear Time Invariant (LTI) model for
the system and employing the estimated matrices in the
previous section in Eq. 1 causes modelling uncertainties
that should be compensated by an appropriate control
method. Therefore, the uncertain model can be described
as follows:

ẋ = Âx + B̂u + w, (5)

y = Ĉx + D̂u,

ξ = H(x,u),

Where w ∈ Rn is the vector that describes the effect of
uncertainties in the state space model, ξ ∈ Rn is the objec-
tive vector, and H ∈ Rn×n is the objective function where
H′H = x′Qx+u′Ru and Q ≥ 0, R > 0 are the state and
control weight matrices which are symmetric. According
to Eq. 5, the controller should stabilise the system around
the origin x = 0 and meanwhile attenuate the effect of
uncertainties on the objective function. Therefore, for a
positive value 0 < γ < 1, the following equation should be
satisfied to achieve the robust performance for the system
described in Eq. 5:∫ T

0

ξ′(t)ξ(t)dt ≤ γ2

∫ T

0

w′(t)w(t)dt, (6)

According to Isidori and Astolfi (1992), the following
conditions should be established to achieve Eq. 6 with the
measurement feedback controller u for Eq. 5.

(I)-There exists V (x) > 0,x ̸= 0 which is a smooth,
positive definite function, and locally defined in a neigh-
bourhood of the origin in Rn, which satisfies the Hamilton-
Jaccobi-Isaacs equation as follows:

V ′
xÂx − γ2α′

1(x)α1(x) + α′
2(x)Rα2(x) + x′Qx = 0 ,

α1(x) =
1

2γ2
Vx, α2(x) = −

1

2
R−1B̂′Vx, (7)

where Vx = ∂V
∂x .

(II)- There exists a matrix G ∈ Rn×3, such that the
equilibrium point ζ = 0 ∈ Rn of the following system
is locally asymptotically stable.

ζ̇ = Âζ + α1(ζ)−GĈζ . (8)

(III)- There exists a function W (x, ζ) ≥ 0 which is smooth,
positive semidefinite, and locally defined in a neighbour-
hood of the origin in Rn×n and such that W (0, ζ) > 0
for each ζ ̸= 0, which solves the Hamilton-Jacobi equation
stated as follows:[

W ′
x W ′

ζ

]
fe(x, ζ) + he(x, ζ)′he(x, ζ) (9)

+ γ2Φ′(x, ζ)Φ(x, ζ) = 0,

where Wx = ∂W
∂x and Wζ = ∂W

∂ζ . Also, the functions

fe(x, ζ), he(x, ζ), and Φ(x, ζ) are described as follows:

fe(x, ζ) =

[
Âx + α1(x) + B̂α2(ζ)

Âζ + α1(ζ) + B̂α2(ζ) + GĈ(x− ζ)

]
, (10)

he(x, ζ) = α2(ζ)−α2(x),Φ(x, ζ) =
1

2γ2
W ′

x .



Theoremthm1 The controller u = α2(ζ) stablises Eq. 5

and constitutes Eq. 6 if the following criteria are satisfied:

1

2
PÂ +

1

2
Â′P−

1

4
PB̂R−1B̂′P +

1

4γ2
P2 + Q = 0,

GĈ = Â +
1

2γ2
P +

1

4
PB̂R−1B̂′P +

1

4γ2
I. (11)

where P > 0 is a symmetric positive definite matrix.

Proof. Considering the function V (x) = 1
2x

′Px, then the
HJI equation in Eq. 5 becomes:

HJI : x′PÂx +
1

4γ2
x′P2x−

1

4
x′PB̂R−1B̂x + x′Qx (12)

However, because all the terms in HJI are scalar values, it
is possible to say x′PÂx = x′( 1

2PÂ+ 1
2Â

′P)x. Therefore,
the HJI equation becomes:

HJI : x′(
1

2
PÂ +

1

2
Â′P−

1

4
PB̂R−1B̂′P (13)

+
1

4γ2
P2 + Q)x.

Accordingly, if P satisfies the first criterion in Eq. 11, then
the HJI condition will be established automatically. Also,
considering W (x, ζ) = 1

2 (x− ζ)′(x− ζ) concludes:

HJ : (x− ζ)′Âx +
1

2γ2
(x− ζ)′Px (14)

−(x− ζ)′Âζ −
1

2γ2
(x− ζ)′Pζ − (x− ζ)′GĈ(x− ζ)

+
1

4
(x− ζ)′PB̂R−1B̂′P(x− ζ) +

1

4γ2
(x− ζ)′(x− ζ),

which can be summarised as follows:

HJ : (x− ζ)′(Â +
1

2γ2
P +

1

4
PB̂R−1P (15)

+
1

4γ2
I−GĈ)(x− ζ).

Therefore, if the second criterion in Eq. 11 is satisfied,
then the third condition for achieving Eq. 6 is satisfied.
Furthermore, considering the Lyapunov function S = 1

2ζ
′ζ

for the system demonstrated in Eq. 8 then the time
gradient of S can be written as:

Ṡ = ζ′ζ̇ = ζ′(Â +
1

2γ2
P−GĈ)ζ. (16)

However, Eq. 16 can be written as follows according to the
second criterion in Eq. 11:

Ṡ = −
1

4
ζ′(PB̂R−1B̂P +

1

γ2
I)ζ < 0 ∀ζ ̸= 0 , (17)

that demonstrates the locally asymptotic stability of Eq. 8
according to the criteria in Eq. 11. Subsequently, if the
conditions stated in Eq. 11 are satisfied, then all the
criteria mentioned for achieving Eq. 6 are established and
u = α2(ζ) will stabilise the system meanwhile guarantees
the robust performance. ■

In conclusion, the control law u = − 1
2R

−1B̂′Pζ will
constitute the H∞ conditions for Eq. 5 if ζ is estimated
by the following observer equation applying the matrices
P and G determined from Eq. 11:

ζ̇ = Âζ + α1(ζ) + B̂α2(ζ) + G(y − Ĉζ) (18)

Fig. 2. The experimental setup for system identification
and closed-loop system performance evaluation. (a)
the mechanism head, (b) the station for test manage-
ment and data acquisition, and (c) the accelerometer
for vibration measurement.

6. RESULTS

This section presents the results obtained from implement-
ing the output feedback H∞ controller for vibration re-
duction. The test setup includes a Witmotion WT901C485
three-axis accelerometer to measure the acceleration trans-
ferred to the installation base as demonstrated in Fig.2.
The vibration measurement frequency was set to 100 Hz
to cover the target frequency range (0-50 Hz) for modal
analysis. According to the model order determination pre-
sented in Section 4, the order of the system’s state space
model was determined as 12. Figure 3 demonstrates the
power spectrum obtained from the measurement and the
observer’s output.

According to the results shown in Fig. 3, the power spec-
trum obtained from the H∞ observer is accurately fitted
to the spectrum for vibration measurements from the
experiment in low frequencies. To evaluate the controller
performance, two sets of experiments were conducted to
examine the vibration measurement with and without the
H∞ controller Figure 4 shows the spectrogram results for
the mechanism following the honeybee queen’s trajectory
without input shaping controller, with the state-feedback
LQR controller, and the closed-loop response when the
output feedback H∞ determines the acceleration com-
mand to suppress the vibration.

According to the results presented in Fig. 4, applying the
controller reduces the vibration intensity and establishes
bounded outputs, demonstrating the closed-loop system’s
robust performance.

Although the experiment verifies the robust performance
of the output feedback H∞, it is worth comparing its
performance with another control technique to evaluate its
capability in regulating vibration for the AROBA system.
The LQR method implemented in Rekabi-Bana et al.
(2024) is considered for comparison.
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According to the results presented in Rekabi-Bana et al.
(2024) and in Fig. 4, although the state feedback controller
reduces the vibration signal’s power by 10 dB, it is evident
that the modal response (particularly at peak frequencies)
is the same with and without the controller. However, the
output feedback H∞ makes the modal response almost
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without the input shaping and with H∞ controller
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Fig. 6. Comparison results for the trajectory tracking
results without the input shaping and with H∞ con-
troller

flat and suppresses the vibration signal’s intensity, partic-
ularly at peak frequencies. In addition to the performance
evaluation in the frequency domain, it is necessary to
assess the tracking performance of the implemented system
with output-feedback H∞ for vibration reduction. The
following figure demonstrates the tracking error and the
position output of the mechanism’s head to compare the
system’s performance with and without the implemented
algorithm.

According to Fig. 5 and Fig. 6, although the H∞ controller
limits the acceleration command to suppress the vibration,
the closed-loop system shows reasonable tracking accuracy
which is an important criterion for the autonomous obser-
vation mechanism to follow the queen honeybee accurately
during the data collection.

7. CONCLUSION

This paper proposes a robust vibration attenuation ap-
proach to suppress the AROBA system’s vibration while
it performs behavioural monitoring of the honeybee queen.
A model with an order of about 12 is determined by
applying the MOESP method to estimate the system’s vi-
bration intensity from the acceleration input. That model
is employed for the H∞ controller and observer. The ex-
periment’s results show that the observer can accurately
estimate the vibration intensity. Accordingly, the closed-
loop system demonstrates its performance by reducing
the vibration signal’s power level to -65 dB on average,
which is 10 dB lower than the signal’s level without the
controller. Future research will address optimisation for
the controller parameters and consider the effect of other
practical elements such as input saturation, dead zone, and
discrete integrator.
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wards robotic mapping of a honeybee comb. In 2024 International
Conference on Manipulation, Automation and Robotics at Small
Scales (MARSS).

Li, L., Zhang, Q., Zhang, T., and Zou, Y. (2023). Vibration
suppression of ball-screw drive system based on flexible dynamics
model. Engineering Applications of Artificial Intelligence.

Liu, X., Li, Y., Cheng, Y., and Cai, Y. (2023). Sparse identification
for ball-screw drives considering position-dependent dynamics and
nonlinear friction. Robotics and Computer-Integrated Manufac-
turing.

 Lopuch, S. and Tofilski, A. (2017). Direct visual observation of wing
movements during the honey bee waggle dance. Journal of Insect
Behavior.

Lu, Z., Wang, Z., Zhou, Y., and Lu, X. (2018). Nonlinear dissipative
devices in structural vibration control: a review. Journal of Sound
and Vibration.
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H., Lennox, B., Şahin, E., Arvin, F., and Schmickl, T. (2022). A
minimally invasive approach towards “ecosystem hacking” with
honeybees. Frontiers in Robotics and AI.

Stefanec, M., Oberreiter, H., Becher, M.A., Haase, G., and Schmickl,
T. (2021). Effects of sinusoidal vibrations on the motion response
of honeybees. Frontiers in Physics.

Ulrich, J., Stefanec, M., Rekabi-Bana, F., Fedotoff, L.A., Rouček,
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