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Laurenz Fedotoff3, Farshad Arvin2, Thomas Schmickl3 and Tomáš Krajník1

Abstract— Honeybees are irreplaceable pollinators with a
direct impact on the global food supply. Researchers focus
on understanding the dynamics of colonies to support their
health and growth. In our project “RoboRoyale”, we aim to
strengthen the colony through miniature robots interacting with
the honeybee queen. To assess the colony’s health and the effect
of the interactions, it is crucial to monitor the whole honeybee
comb and its development. In this work, we introduce key
components of a system capable of autonomously evaluating the
state of the comb without any disturbance to the living colony.
We evaluate several methods for visual mapping of the comb by
a moving camera and several algorithms for detecting visible
cells between occluding bees. By combining image stitching
techniques with open cell detection and their localization, we
show that it is possible to capture how the comb evolves over
time. Our results lay the foundations for real-time monitoring
of a honeybee comb, which could prove essential in honeybee
and environmental research.

I. INTRODUCTION

Western honeybees (Apis mellifera) play a pivotal role in
our ecosystem, acting as indispensable pollinators, directly
impacting the food web and contributing to the biodiver-
sity of flowering plants. Thus, monitoring and maintaining
healthy bee populations is essential for both ecological
balance and food security.

Not all behavioral strategies and self-organization mech-
anisms of the bees are fully understood. Interactions with
other species, parasites, or pathogens add further complexity.
However, advancements in robotics and artificial intelligence
have made it possible to develop systems for animal-robot
interaction in their natural ecosystems. Recently, researchers
presented the potential of using fixed-camera systems capa-
ble of long-term observation of honeybee queen activity [1]
and tracking of individual bees [2], [3].

In the EU-funded project “RoboRoyale”, we aim to sup-
port the efficiency and growth of honeybee colonies by using
a robotic system to interact with and support the honeybee
queen. As the central element of the colony, she is solely
responsible for practically all egg-laying activities and, thus,
for the growth of the colony. Hence, a robotic manipulator
was designed for observing the colony and the honeybee
queen itself with a high-resolution moving camera [4]. In the
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The code for the experiments is available at: https://gitlab.
roboroyale.eu/janota/2024_marss_towards_mapping

future, the robotic manipulator will also carry a mechanism
that will interact with the honeybee queen.

Apart from the honeybee queen tracking, we can observe
the rest of the hive by taking images at various levels of
detail anywhere in the hive. Because the state of the whole
hive is important to assess the colony’s health and the queen’s
behavior, the system is also tasked with creating and updating
a map capturing the contents of the underlying comb. The
whole comb can be sequentially scanned with a grid of
partially overlapping image tiles taken at different locations.
Such scans can be directly utilized to create the map with
the comb cells.

This work presents key steps towards autonomous map-
ping of the dynamic honeybee comb. Identifying all kinds of
individual cells in the comb images can be a challenging task
even for a human annotator, and thus, creating a dataset for
direct object segmentation would be a complicated process.
Instead, we use the fact that the state of the capped cells
does not change until the cell is opened again; thus, we only
need to identify the open ones. We developed a system for
uncapped cell detection and mapping, which can track the
evolution of individual cells over time. The proposed pipeline
combines the odometry information from the motors with
image registration to stitch the grid of overlapping image
tiles, creating a snapshot of the entire comb. Then, we detect
the uncapped cells not occluded by bees and determine their
position on the comb, creating a map of uncapped cells.
By analysing a sequence of such maps gathered over time,
we capture the evolution of individual cells in Fig. 1. Such
map dynamics can provide important indicators of colony
health (e.g., growth rates) and act as a foundation for deeper
understanding. In future work, we will develop algorithms
for cell-type classification and integrate the gathered spatial
maps into a semantic spatio-temporal representation of the
whole comb. That will allow us to monitor the state of the
living colony over time, assessing the results of the robot-
queen interaction.

II. RELATED WORKS

This section presents state-of-the-art research in relevant
areas preceding our work. Later, we compare the methods for
stitching a grid of partially overlapping images reported in
the related works and show their limitations when applied in
dynamic and cluttered environments with highly repetitive
patterns. We also address the shortcomings of commonly
used Circle Hough Transform for cell detection in comb
images containing bees by employing deep learning methods.
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Fig. 1: Visualization of key components of our system: (Left) Cell detection with Circle Hough Transform and Faster R-CNN
(ResNet-50 backbone) together with the ground truth (fully visible cells are highlighted in green, occluded cells in blue).
(Middle) Tracking of cell detections in time with the development of a single cell, demonstrated on a single image tile from
the whole stitched comb (right).

A. Image stitching

Image stitching is a technique used to combine multiple
images with overlapping fields of view into a single com-
posite image. For a camera parallel to the observation plane,
the full registration problem reduces to the estimation of
horizontal and vertical translation. There are two prevalent
approaches for image registration in the context of stitching
grids of image tiles: the feature-based approach and the direct
approach in a sliding window manner.

1) Feature-based image registration: The feature-based
approach relies on a feature detector to identify key points
of interest, which are then described using descriptors and
matched between images based on their descriptor similarity.
The final transformation is estimated from the matched corre-
spondences with the Random Sample Consensus (RANSAC)
algorithm as in [5]–[9].

A predominant choice for a feature detector in many stud-
ies [5], [6], [8], [9] is the Scale-Invariant Feature Transform
(SIFT), introduced by Lowe [10]. However, the particular
choice of feature detector depends on the specific application,
and the features, in some cases, need to be adjusted for the
task [7].

Lately, machine learning (ML)-based methods are often
introduced. Particularly noteworthy is the work in [11],
where authors introduce Superpoint, a CNN-based feature
detector and descriptor. Additionally, [12] demonstrates the
feasibility of using Graph Neural Networks for matching
features. Researchers in [13] introduced Detector-Free Local
Feature Matching with Transformers (LoFTR) to address the
challenge of separate neural networks for feature detection
and matching. Notably, [9] showcases the significant poten-

tial of using LoFTR instead of SIFT in the context of electron
microscopy and image tile stitching.

2) Direct image registration: The direct approach to im-
age registration aims to find the transformation by maxi-
mizing a similarity metric across all possible translations.
Instead of using a computationally complex sliding-window
approach, researchers often employ more efficient techniques
like Phase Correlation (PC) [14]–[20] and evaluate a few
highest peaks from the PC based on Normalized Cross-
Correlation (NCC) values. In [15], the authors combine both
and first applied PC on downscaled images and then obtained
the precise solution using a sliding-window approach on the
original unscaled images.

3) Global optimization: The methods introduced for im-
age registration are designed to estimate transformations
between individual pairs of images. However, the necessity
for global optimisation methods arises when dealing with
a grid of image tiles. These methods aim to minimize
misalignment across all pairs of overlapping images, con-
sequently mitigating the accumulation of image registration
errors during the stitching process.

In the study by [5], the optimal rigid transformation is
achieved by iteratively minimizing the square displacement
of landmarks identified by SIFT. Another common strategy
involves constructing a graph with image tiles as nodes and
connecting edges between overlapping pairs of images. Many
studies [18], [20], [21] employ the minimum spanning tree
algorithm to identify the optimal subset of edges that connect
all tiles and minimize the resulting misalignment. Addition-
ally, [9] proposes to perform the optimization with graph-
based 2D Simultaneous Localization and Mapping (SLAM)



method GraphSLAM. Another widely adopted technique is
to construct an over-constrained system of linear equations
and minimize the sum of all pairwise transfer errors through
least squares [15], [16] or weighted least squares [14], [17],
[19], [20], employing correlation values as weights.

B. Honeybee cell detection

Honeybee cell detection is an actively researched field,
mainly motivated by automated health assessment and the
threat posed by the Varroa destructor mite, an external
parasite that significantly impacts bee colonies by causing
malformation and weakening of the colony, as well as
transmitting viruses. To address this, researchers explore
alternative methods like assessing dead brood removal rates
as an indicator of colony resistance to Varroa mites [22]. The
hygienic behavior of bee colonies is traditionally examined
manually by beekeepers, which is a labor-intensive process
[23], [24]. In response, several studies aim to reduce the
workload by automating the detection of uncapped cells or
directly identifying brood cells. For instance, in [25], the
authors utilize the Canny edge detector to identify contours
and then employ a set of features for classifying uncapped
cells, allowing them to track back the uncapping events
in recordings. Another study, detailed in [26], opt for a
convolution-based method with a circular mask of cell size
to detect brood cells. Authors of [27] propose detecting the
individual cells by image thresholding and partitioning the
image into so-called superpixels.

Many researchers leverage the fact that the cells are of
a circular shape and don’t overlap. Typically, they start
with preprocessing steps to suppress noise and normalize
the image and then employ Circle Hough Transform (CHT)
[28] for individual cell detection [29]–[34]. Additionally, [32]
extends the CHT with the use of U-Net, a Convolutional
Neural Network (CNN) for binary segmentation, to filter out
cell detections outside the honeybee comb. In contrast to
traditional computer vision methods for cell detection, the
authors of [2] embrace a deep learning approach and use a
U-Net neural network.

III. METHODS

A. System Description

Investigating the honeybee colony and developing a spa-
tially consistent map from the comb demands an autonomous
observation mechanism to collect information from the hive
continuously. In our work, we use a robotic system con-
ceptually presented in [4], which allows moving the end
effector parallel to the comb plane. Observations are captured
with a camera, which is mounted on the end effector of the
mechanism and provides high-resolution 1920 px × 1080 px
images at a rate of 30 Hz with controllable zoom and focus.
The system can select camera zoom to provide images with
resolutions of 16 - 67 µm per pixel, which is sufficient for
reliable detection of small objects like 1 mm × 0.3 mm
honeybee eggs. The construction of the observation hive
commonly used in research on honeybees is shown in Fig. 2.

Fig. 2: Observation hive, commonly used in biology to study
honeybee behavior, courtesy of [35]. Standard combs are
placed in a wooden construction behind a glass panel, and the
hive is connected to the outside by a plastic tube entrance. All
observations are done under near-infrared light to minimize
disturbance of the colony.

B. Comb image stitching

In order to generate a metric map, the overlapping image
tiles must be precisely aligned. While the robotic system
provides odometry data for each image tile, any inaccura-
cies in this information can jeopardize the entire system’s
performance. Therefore, to enhance the odometry’s accuracy,
we evaluated the performance of both correlation-based
and feature-based image registration, as each approach has
different advantages and disadvantages. The collected images
vary a lot in exposure and illumination, and the overlaps
significantly differ in terms of content due to the movement
of the bees, which can pose difficulties to the correlation. On
the other hand, the feature-based approach may suffer from
the lack of unique features, as the bees and the cells produce
highly repeatable patterns.

1) Correlation-based approach: As mentioned in section
II-A, the correlation-based method involves assessing all
potential translations between images. To narrow down the
search space, we leveraged the odometry as prior information
and limited the deviation to 20 pixels in both the x and
y axes. The similarity metric was then evaluated solely on
the estimated overlapping parts of the images. Addressing
challenges related to differing brightness and exposure, we
employed normalization and histogram equalization, utilizing
the Normalized Cross-Correlation Coefficient (NCC) as the
similarity metric. The NCC for two images I1 and I2 with
mean Ī1 and Ī2 is defined as:

NCC =

∑
x,y(I1 − Ī1)(I2 − Ī2)√∑

x,y(I1 − Ī1)2
√∑

x,y(I2 − Ī2)2
(1)

2) Feature-based approach: In the feature-based ap-
proach, we use SIFT [10] for keypoint detection and descrip-



tion. Similarly to the correlation-based approach, we apply
normalization and histogram equalization on the images and
then focus the feature detection solely on the estimated
overlapping areas, constraining the potential deviation from
the odometry to 20 pixels in both the x and y axes. Addi-
tionally, since the images do not vary in scale, we match
two keypoints together only if the ratio of their scales is less
than 1.5. We employ a simple histogram voting approach
to determine the translation between images, where the
transformation with the most votes is selected.

3) Global optimization: To address misalignment issues
across all pairs of image tiles, we use error minimization
using a least squares optimization. We construct a graph
G = (V,E), where V represents the positions of individual
image tiles pi = (x, y)i, and E is a set of edges con-
necting pairs of neighboring image tiles. To formulate an
over-constrained system of linear equations, we utilize the
estimated translations dij between image pairs and anchor
the position of the first tile to origin (0, 0). This gives us a
problem of the form

min
∀i:pi

∑
(i,j)∈E

∑
c∈{x,y}

(
(pi,c − pj,c)− dij,c

)2
(2)

s.t. p1 = (0, 0).

While there is an option to weigh the contribution of
individual estimated translations by confidence indicated, for
example, by cross-correlation values, we chose not to employ
this measure due to its sensitivity to the randomness of bees’
motion in our case.

C. Cell detection

1) Circle Hough Transform: The Circle Hough Transform
(CHT) [28] is an algorithm for detecting circles in images.
As mentioned in section II-B, CHT has been commonly used
by many researchers to detect uncapped honeybee cells, thus
making it a reasonable baseline.

In the preprocessing stage, we applied Contrast Lim-
ited Adaptive Histogram Equalization (CLAHE) for image
normalization and a Bilateral Filter for noise suppression.
We then used the OpenCV [36] implementation of the
CHT for circle detection. The parameters were determined
experimentally and are summarized in Table I.

TABLE I: Parameters of the Circle Hough Transform

Parameter Value
minimum distance between circles 40
minimum radius of the circles 30
maximum radius of the circles 45
Canny edge detector threshold 40
accumulator threshold 18

2) Object detection with neural networks: As usually
reported, the CHT approach tends to produce false positives,
which can then be further filtered out, for example, by
restricting the area of the comb in the image [32]. Similarly,
it could be possible to classify each of the circles detected by

the CHT with classifiers, such as a compact neural network,
in an R-CNN style, where the CHT would act as a region
proposal algorithm. As this approach could significantly
affect the possible reachable recall of the method already
in the stage of the region proposal, we trained two different
commonly used object detection models instead.

First, we adopted a two-stage object detection architec-
ture, Faster R-CNN [37], implemented in Python TorchVi-
sion package [38]. We experimented with two backbones—
ResNet-50 and ResNet-18 [39] both with additional feature
pyramid network (FPN)—pre-trained on the COCO dataset
[40]. All models were first trained with a frozen backbone
and then fine-tuned in entirety, the details are in the pro-
vided code repository. For its faster inference, a single-stage
YOLOv5s6 model from Python Ultralytics package [41] was
then included as well with a similar training procedure.

To address the problem of varying exposure and illumina-
tion, we employed image augmentations such as brightness
and contrast changes, defocus, and gamma correction. To
prevent overfitting, we also used horizontal and vertical flips.

3) Cell accumulation: To be able to get the temporal
evolution of individual cells, we first needed to be able to
associate detections from different scans. Given the metric
positions of the detections from the odometry and the correc-
tion by estimated translation, we establish correspondences
between the new detections and the map using the RANSAC
algorithm. We resort to a sampling algorithm, as for any
given scan, a substantially different set of cells can be
detected, which can lead to a small intersection between all
of the map and all of the detections. In the algorithm, we
consider candidate associations to be all map cells in the
radius of 20 px from the center of the detection. If no match
is found for the new detection in the map, it is entered in
the map as a new cell.

IV. DATASETS

In our experiments, we use a dataset gathered with the
robotic gantry system in the observation season of 2023. The
dataset consists of full comb scans, which form a regular
rectangular grid of partially overlapping images on both sides
with a camera resolution of 67 µm per pixel, each taken in
a different location.

To evaluate the accuracy of both the odometry and the
proposed image stitching methods, we created a dataset of
randomly sampled image pairs along with corresponding
translation information. The odometry served as prior infor-
mation in determining these translations, which were then
manually refined. Due to modifications in the robotic system
during the experiments, two distinct datasets were created.
The first dataset, IS1, consists of 82 comb image pairs with
imprecise odometry information. The second dataset, IS2,
comprising 176 pairs, has more precise odometry measure-
ments (see section V).

For training the object detection models and determination
of optimal parameters for the CHT, we annotated a dataset in
a semi-automatic way comprising images with cells specified
as bounding boxes. To ensure diversity in the dataset, the



image tiles were randomly selected from the collected data
across different days and parts of the comb.

Initially, we applied the Segment Anything Model (SAM)
[42] with the ViT-H model for image segmentation. Sub-
sequently, we refined the resulting masks by implementing
a simple filter based on the area and circularity of the
individual masks, and finally, we manually annotated the pre-
filtered segmentations. The cells were categorized into two
classes, fully visible and partially occluded, to allow easier
extension for subsequent analysis of the cells’ type.

Using this annotation tool, we annotated a set of 260
honeybee comb images, which were split into training (200
images), validation (30 images) and testing (30 images)
parts.

V. RESULTS

A. Image stitching

The image stitching methods were evaluated on the
datasets presented in the previous section. For each method,
we calculated the mean error with standard deviation for the
x and y axes. The results for the IS1 dataset are summarized
in Table II.

TABLE II: Image stitching results on IS1 dataset

Method Glob. opt. Error x-axis [px] Error y-axis [px]
odometry - 10.24 ± 7.40 12.35 ± 7.94
NCC - 5.36 ± 5.72 4.33 ± 4.59
NCC least squares 7.23 ± 5.41 6.01 ± 5.09
SIFT - 9.90 ± 9.08 10.63 ± 10.22
SIFT least squares 8.72 ± 6.45 10.36 ± 8.63

It can be seen that the odometry in the IS1 dataset is
very imprecise. The best result was achieved with the direct
approach with the Normalized Cross-Correlation Coefficient
(NCC). Surprisingly, its performance was better without
global optimization than with it. The feature-based approach
performed worse, but the global optimization slightly im-
proved its accuracy. Both of the methods, however, managed
to decrease the odometry error.

The results for the image stitching evaluated on IS2 dataset
with more precise odometry are summarized in Table III.
The table shows that in the case of precise odometry, the
other methods could not achieve nearly as low an error as
the odometry itself. However, the feature-based approach
outperformed the correlation-based one. In both cases, global
optimization helped achieve better error rates.

TABLE III: Image stitching results on IS2 dataset

Method Glob. opt. Error x-axis [px] Error y-axis [px]
odometry - 1.67 ± 4.04 1.85 ± 4.51
NCC - 9.59 ± 7.32 9.53 ± 7.09
NCC least squares 7.67 ± 6.28 8.77 ± 5.30
SIFT - 8.07 ± 5.23 8.97 ± 6.11
SIFT least squares 5.40 ± 4.27 5.69 ± 4.73

In Figure 1, we show a stitched image of the honeybee
comb from individual image tiles. We used only the odom-
etry as it proved to be the most sufficient on the new setup.

Furthermore, we implemented linear blending to make the
transitions between the images smoother. All the image tiles
underwent normalization and histogram equalization.

B. Cell detection

The cell detection methods were evaluated using the
testing part of the dataset, which was introduced in the
previous section. We applied class-agnostic Non-maximum
Suppression (NMS) with an IoU threshold of 0.3 on the
output of object detectors (where applicable) to account for
the fact that each cell should be classified as either fully
visible or occluded. We consider the detected circles from
the CHT to be of class fully visible cells. For each method
and class, we calculated the Average Precision (AP) metric
averaged over IoU thresholds in interval [0.5, 0.95]. We also
report precision (P) and recall (R) for an IoU threshold of
0.5 and a confidence threshold of 0.5. The results are for the
class of fully visible cells summarized in Table IV and for
the occluded cells in Table V. Moreover, the performance
of the CHT and the Faster R-CNN with ground truth is
demonstrated on a sample of test data in Fig. 1.

TABLE IV: Fully visible uncapped cell detection results

Method AP [%] AP-50 [%] P [%] R [%]
CHT (Bilateral filter, CLAHE) 9.5 13.0 11.1 95.1
YOLOv5s6 86.6 94.0 85.1 93.9
Faster R-CNN (ResNet-18) 84.4 94.8 88.1 92.7
Faster R-CNN (ResNet-50) 90.9 95.3 92.2 92.4

TABLE V: Partially occluded uncapped cell detection results

Method AP [%] AP-50 [%] P [%] R [%]
CHT (Bilateral filter, CLAHE) - - - -
YOLOv5s6 64.2 83.3 87.6 68.8
Faster R-CNN (ResNet-18) 64.5 87.7 83.6 80.0
Faster R-CNN (ResNet-50) 79.2 92.0 87.4 84.9

It can be seen that although the CHT detects almost
all fully visible uncapped cells, it is not suitable for cell
detection in natural living colony, as it produces a large
number of false positives. The best results were clearly
obtained with Faster R-CNN with ResNet-50 backbone,
which outperformed all other methods. The Faster R-CNN
with ResNet-18 backbone and YOLOv5s6 achieved similar
results. The weakness of both models is the detection of
partially occluded cells.

VI. CONCLUSION

In this work, we proposed a pipeline for autonomous
mapping of the honeybee comb and tested several of its
components. We compared multiple image registration tech-
niques, evaluated the precision of system odometry, and
assessed the performance of several uncapped cell detectors.
The implemented methods for image registration were not
as precise as the odometry in the system with improvements
but did provide an edge when the original odometry was
weak. For cell detection, the Faster R-CNN network achieved



promising performance even with a rather small dataset used
for the training, where the classical CHT algorithm failed due
to high levels of clutter caused by bees. By integrating the
best-performing methods in a comb mapping pipeline, we
were able to determine the positions of opened cells across
the entire comb and track their evolution over time.

In future work, we will focus on the improvement of
the map composition from detections and robustness to
changes in the comb structures. We will extend the map
by including semantic information about the detected cell
contents, which will further improve the robustness of the
map composition. We are confident that we are just a few
steps away from having real-time monitoring of a living
colony by an autonomous robot.
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