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Abstract— Honeybees are one of the most important polli-
nators in the ecosystem. Unfortunately, the dynamics of living
honeybee colonies are not well understood due to their complex-
ity and difficulty of observation. In our project “RoboRoyale”,
we build and operate a robot to be a part of a bio-hybrid
system, which currently observes the honeybee queen in the
colony and physically tracks it with a camera. Apart from
tracking and observing the queen, the system needs to monitor
the state of the honeybee comb which is most of the time
occluded by workerbees. This introduces a necessary tradeoff
between tracking the queen and visiting the rest of the hive
to create a daily map. We aim to collect the necessary data
more effectively. We evaluate several mapping methods that
consider the previous observations and forecasted densities of
bees occluding the view. To predict the presence of bees, we
use previously established maps of dynamics developed for
autonomy in human-populated environments. Using data from
the last observational season, we show significant improvement
of the informed comb mapping methods over our current
system. This will allow us to use our resources more effectively
in the upcoming season.

I. INTRODUCTION

The advances in additive manufacturing and miniaturiza-
tion enabled fast prototyping of robots tailored to be inte-
grated into natural systems [1]. This opened domains beyond
traditional agri-tech applications, resulting in robots interact-
ing with animals in their natural ecosystems [2]. These robots
can carry out not only ecological monitoring [3]–[5], but also
actively support nature conservation through maintenance [6]
and recovery of declining ecosystems [7]. Active support of
the ecosystems is going to gain importance, especially due
to the ongoing ecological crisis [8], [9].

We investigate the use of robots to support honeybee
colonies, which are considered keystone species crucial for
ecosystem stability. In the EU project RoboRoyale, we aim
to use robotic surrogates to interact with honeybee queens to
improve the efficiency of honeybee colonies’ pollination. To
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Fig. 1: Example visualization of the second cycle (c = 2) of
predictive mapping with a = 0.1. Starting with a map from
the previous cycle M(c−1) (white color repr. observed parts
of comb), and respective states of coverage s(c−1) (lighter
color indicates higher coverage), the system decides which
locations to visit in cycle c. Predictive methods give for time
t of the cycle predictions of the density of bees p

(c)
t (darker

colors represent more empty parts of the comb). From s(c−1)

and p
(c)
t , the system generates a ranking of locations R(c)

(lighter colours represent lower ranks) and then chooses a%
of scans to visit, collects data U(c) and combines it with
M(c−1) into M(c) which gives new states of coverage s(c).

assess the effect of the interactions, the system has to monitor
not only the queen but also the worker bees, the brood, and
the comb cells. To enable these observations, we developed
a gantry robotic system with a moving camera [10]. It is ca-
pable of continuously tracking the queen [11] and capturing
images of the worker bees and the comb cell contents with
unprecedented detail and extent of observations. However,
our robot cannot observe the entire colony state at once. This
requires to consider the dynamics of the queen, worker bees,
and the comb when planning and executing the observations.

Since the full brood evolution takes about three weeks and
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filling the combs with honey takes several days, observations
of the comb cells once per day are sufficient to capture their
dynamics. The queen’s activity breaks down into intervals
of patrolling, when she walks around the comb, inspects
the cells and lays eggs, and resting, where she stays at one
place for several minutes. During resting, the queen either
actively interacts with the worker bees who feed and groom
her, or she remains motionless. These resting periods can be
detected by the vision-based tracking, and the robot has a few
minutes to turn its attention away from the queen. However,
a survey of the entire comb requires a combination of 80 to
90 images captured at different locations of the comb. Thus,
the resting periods are not long enough to survey the entire
comb without risking missing important interactions before
the queen resumes her movement. This is further aggravated
by the worker-bees occluding substantial parts of the combs,
which requires either staying at each scanning location long
enough for the bees to move around or revisiting these
locations several times throughout one day.

However, the activity of the bees is partially governed by
the proximity of the queen, the distribution of the brood, and
the influx of nutrients, which is subject to the diurnal cycle.
Thus, the density of the worker bees at different areas of the
hive changes could be potentially modeled and forecasted.
This allows us to predict which observations are most likely
to contain cells that have not been observed during the given
day.

In this paper, we investigate methods that allow us to plan
the observations to survey the comb in an efficient manner.
We aim to reduce the number of observations and consider
the time spent performing them while achieving observations
of the contents of most of the cells in the hive each day.

Using a dataset from a living beehive colony covering
several weeks, we assessed ten different methods. Two of
these are uninformed, and eight are informed, of which one is
greedy and the rest predictive, using maps of spatio-temporal
dynamics adopted from research on long-term autonomy,
where they were developed to model people presence for
robot navigation [12], [13]. On this problem we demonstrate
the value of such techniques also for description of other
then human behaviors.

II. RELATED WORK

There were efforts to capture data about living bee colonies
using modern technologies and machine learning algorithms,
like the trajectories of worker-bees using markers [14] or
later without them [15]. While these works present signifi-
cant steps toward understanding honeybee behavior on the
scale of the whole colony, they do not yet capture long
observations and show data in horizons under 1 h. The work
of [11] opened the effort for truly long-term observations
inside the hive, with marker-based visual tracking of the
queen. In the last version our system is tracking the queen
and various KPIs of the colony using a mounted movable
camera allowing for detailed observation [10].

Collecting data under possible occlusions poses two key
challenges for robots: safe navigation and task efficiency. The

navigation challenge may involve maneuvering through un-
known environments with occlusions, such as when grasping
partially visible objects [16] or ensuring safety by anticipat-
ing encounters with pedestrians [17] or cars [18]. Solutions
typically rely on the robot’s ability to minimize occlusions
through tailored movements and additional data collection or
on robust planning considering potential information gaps.

The second challenge, task efficiency, can be approached
through two paradigms: inspection or search. In inspection
tasks, the objective is to minimize resources (e.g., time or
energy) required to collect all data or maximize the reward
associated with collecting partial data while on a resource
budget. In the complete-graph domain, the former scenario
leads to the well-known traveling salesman problem (TSP),
while the latter leads to the orienteering problem (OP) [19].

Under the search paradigm, collecting more data early
throughout the task is most important, optimizing for the
scenario when resources are highly likely to be limited, but
the exact budget value is not known in advance. On graphs,
this is known as the graph search problem (GSP) [20].

Both paradigms may apply to our case. Inspection is
the more natural one, as it combines completing the data-
collection task while minimizing resources. Particularly, in
this paper, we optimize for the minimum total number of
collection cycles. In addition, we use the traversed distance
(which is a proxy for completion time) as an auxiliary
statistic. In the future, we consider an extension to the
OP formulation. The search paradigm becomes applicable
when the data-collection task may be interrupted due to the
end of the queen’s resting period, an event not known in
advance. For this scenario, we present preliminary results as
a stepping stone for future work. The search paradigm has
not been considered in our main stream of experiments due
to unfinished integration with the rest of the system.

Maps of Dynamics (MoDs) [21] are robotic maps that
enable the prediction of an environmental state outside of
the robot’s perceptual range and forecast into the future.
There exists a large scale of different approaches, which
can be categorized by the types of dynamics they model,
information that can be extracted from observations, a form
of representation, and areas of applications [12].

In this work, we rely on spatio-temporal MoDs [22] that
model active, non-directional dynamics with independent
area-based observations representing the dynamics by a
temporal model IV-A suitable for task planning [13]. The
original idea that constituted this branch of MoDs states that
robotic maps need to adapt to the environment continuously
over time [23]. Over time, it evolved from a prompt reaction
to the structural changes [23] to a forecasting of changes
occurring repeatedly [24]. This approach was then broadened
to modeling of dynamics caused by human actions [25] and
later human presence [26], people density [27], and human
flows [13] in urban, human-populated environments.

An integration of spatio-temporal MoD to enhance a
decision-making process in a bio-hybrid system is, therefore,
a pioneering work. In the following experiments, the methods
are confronted with spatial and temporal structures developed



by insects, which can differ substantially from principles of
human behavior for which the methods were developed.

III. PROBLEM

Our hive is adapted for the observation of bee colonies.
It is made of two 420mm× 220mm wooden combs on top
of each other with a glass panel on both sides. The hive is
located indoors, but it is connected to the exterior with a
plastic tube so the bees can fly outside.

A. Observation System

Rather than observing the entire honeybee colony in low
detail as in [11], our system is designed to provide a high
level of detail over a small area anywhere in the hive. This
is achieved by a positionable camera of 1920 px × 1080 px
resolution and 30Hz capture rate. For simplicity, we treat
each side of the hive separately and label them “side 0” and
“side 1”.

B. Incremental Comb Observations

Our goal is to collect a complete image of the underlying
comb without occlusions on a daily basis. In the current
setup, the system does so by recording a complete scan of
the whole hive at every opportunity given by the queen’s
resting. This means going to every position defined on a
regular grid covering the comb and collecting local data.
The collected data is combined with previous observations
to filter bee occlusions. We consider the level of coverage
to be the observed comb area for each position individually.
The task then is to optimize the selection of locations to
gain high coverage with a limited number of observations.
An example of how the whole cycle looks for a predictive
method is shown in Fig. 1.

The regular rectangular grid of scanning consists of tiles
li for i = 1, . . . , Nl given by the position of the camera and
defined by the area of the comb it can see given its field
of view. The tiles are not exclusive and can overlap, which
introduces dependencies in data collection between locations.
Each observed scan S at time t is a mapping St(i) = Tt,i,
where Tt,i =

(
(x, y, ϕ)t,i,j

)Ni

j=0
is a set of bee observations

at the tile i.
Each day d, a certain number of scanning cycles c =

1, . . . , Sd is conducted. Over this time, in the form of a ma-
trix, a composed rasterized map M of the comb under the bee
occlusions is cumulatively formed. We denote M (c) the map
after cycle c. The state vector s(c), s(c)l = |A(c)

l,covered|/|A
(c)
l,all|,

where Al is a block of M representing the cameras field-of-
view at location l, stores the proportion of area A captured
free of bees at each location after cycle c.

Each mapping method then for a cycle c proposes a
ranking of locations to visit R(c), formally a permutation
of {1, . . . , Nl}, given s(c) and time t at the start of the
cycle. According to this ranking first a · 100% of locations
L(c) = lR(c)(1), . . . , lR(c)(aNl) are visited; we further refer to
a as “areas ratio”. An empty copy of M denoted U (c), is
formed by overlaying over U ellipses representing detected
bees at (x, y) with orientation ϕ for each detection in Tt,l
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Fig. 2: Example of evolution of the state vector s and the
corresponding Cworst statistic. The Area Ratio a was set to
0.1. The left graph represents the evolution of ranking in
every one of the 90 locations (rows) during every cycle
(columns). The lighter the color, the lower the rank. The
middle graph represents the evolution of states, again, rows
representing locations and columns cycles. The lighter the
color, the higher the coverage. The right graph then repre-
sents an evolution of coverage of every location after every
cycle (thin lines). The thick red line highlights an evolution
of a minimum coverage over all locations Cworst.

and at location l ∈ L. This way, U (c) is undefined outside
of visited locations, and on them represents occlusions by
bees. The U (c) is combined with M (c−1) to form M (c) so,
that ∀l : A(c)

l = A
(c−1)
l ∨ ¬B(c)

l , where Al is a block of M
and Bl block of U representing the cameras field-of-view at
location l. Using this rule, M cumulatively stores the areas
seen without occlusions.

The individual methods are then fully defined by the way
ranking R(c) is derived at each cycle. The methods we
consider in this work are fully described in Section IV-B.

IV. METHODS

A. Applied Maps of Dynamics

The spatio-temporal MoDs we use are learning algorithms
taking in general data in the form of {(t,o)i}Ni , where t is a
timestamp, and o is a vector of observation’s characteristics.
Upon learning, these algorithms provide a function f(t)
forecasting the state of the environment at a chosen time
t.

Our dataset {(t, x, y)i}Ni consists of N detections of bees
characterized by their position in time, o = (t, x, y). We con-
sider seven successful MoDs from [13], namely: HistDay-
Grid, HyT X GMM, HyTted GMM, MeanGrid, WHyTe,
WHyTened kMeans, and time window GMM. The names
are usually composed of prefixes and postfixes, following the
convention in the original paper. Prefix defines a forecasting
method while postfix defines the spatial structure of the
map—Grid means that the forecasting is carried out in each
cell of the predefined grid, kMeans, and GMM means that the
grid is derived from the data by applying the corresponding
clustering method, and absence of the postfix (WHyTe)
stands for a method that models space and time together.



B. Considered Methods of Locations Ranking

Here, we specify the considered mapping methods, giving
the rules for the ranking of locations R to select the best ones
to visit. Our mapping methods fall into three main categories:

1) Uninformed: We consider two uninformed methods;
one takes

Rrandom ∼ Permutation({1, . . . , Nl}), (1)

to be a random reshuffle of location indexes. The second
performs a preempted snake-like motion, i.e.

R
(c)
sequential(x) = (x+ c · a ·Nx) mod Nx. (2)

2) Greedy: Greedy mapping prefers to visit areas that are
least covered, so for Rgreedy it holds that

∀(i, j) : s(c−1)
i < s

(c−1)
j ⇒ R

(c)
greedy(i) < R

(c)
greedy(j). (3)

3) Predictive: Each of the predictive mapping methods
employs a specific MoD model fmodel with predictions com-
puted as

∀l : pl =

{∫
Al

fmodel(t, x, y)dxdy space-continuous
fmodel(t, l) space-discrete

. (4)

From the normalized predictions p′l =
pl∑
l pl

, we compute an
optimistic estimate of information gain at the location l and
time t

e
(c−1)
model,l = (1− s

(c−1)
l )(1− p′l), (5)

which is the product of missing coverage and relative ex-
pected free space. From the expected information gain, the
ranking follows

∀(i, j) : e(c)i < e
(c)
j ⇒ R

(c)
model(i) < R

(c)
model(j). (6)

V. EXPERIMENTS

For our experiments, we use a dataset collected by the
system to simulate the selective data collection. The main ob-
jective is to capture a daily snapshot of the entire comb area,
given shorter time windows and selective data collection. We
looked at two basic criteria: the time until certain coverage
sl is reached over all locations l and, complementarily,
the progress of the coverage in time. The notion of time
has three main interpretations in our work. The first is the
number of data collecting cycles, the second is the traversed
meters, and finally, the actual time, which depends on the
physical parameters of the setup, like the time it takes to
collect an appropriate sample. The cycles and meters are
motivated by two main modes of data collection—observing
and scanning—with cycles combined with the ratio of visited
location a, which also corresponds to the amount of raw
data that is collected and needs to be stored. The observing
mode requires the camera to stay for a longer time at each
location, e.g., to capture the dynamics of worker-bees and
their interactions. Scanning takes one photo at each location,
which requires only a short time to collect. Both modes are
interesting for our project, so we analyze time in terms of
both cycles and traversed meters and then look at the real-
time, substituting the parameters of our setup.

For our testing, we kept both sides of our hive separately,
as the hardware was set up a bit differently, which allows
for control over the camera setup (that is why we have
different number of locations for both sides). The daily
snapshot was composed separately for each day and varying
areas ratio of allowed locations a, taken as ten quantiles
from 5% to 100%. We analyze the time needed to reach a
certain predefined coverage and compare the overall covering
performance of chosen methods.

A. Collected Dataset

A one-month-long dataset of full scans collected by our
robotic system [10], containing 729 scans on side 0 and
1108 scans on side 1, was processed. The scans consist of
honeybee comb images organized in a regular rectangular
grid, taken at 90 locations on side 0 and 80 on side 1. Bees
are detected using a fine-tuned YOLOv8 model [28], and
their orientation is estimated using a custom convolutional
neural network (CNN) with fully connected layers. Both
models were presented in [10]. This way, we obtain almost
two million bee detections on side 0 and three million
detections on side 1. To get training data for the maps of the
dynamics, it is necessary to have enough temporal extent of
the training data, so we split the dataset into the first 21 days
for training of MoDs and the following 8 days for testing
covering methods.

B. Coverage

We define the achieved coverage as a minimum over all
locations,

Cworst,d(i) = min
l

s
(i)
l , (7)

where i = 1, . . . , Sd is an index of the scanning cycles
performed on day d. An example of the evolution of the
state vector s based on ranking R and the resulting Cworst is
shown in Fig. 2.

C. Covering Metrics

Once given the set of selected locations L(c) = {li}aNi=1,
we also estimate the cost of the planned data collection. In
the current setup, the camera always starts in the bottom left
corner of the hive, but for selective collection, the camera
would start at the position of the resting queen. Since that
is often repetitive, we chose to simulate the starting position
by a fixed value of the origin O = (0.11, 0.312), which
corresponds to the location where the queen rested the most
in our data. We compute the optimal order of visits for L′ =
{O} ∪ L as a solution to the TSP problem

π∗ = argmin
π

∑
i

dist(lπ(i), lπ(i+1 mod |L′|)) (8)

where π : {0, . . . , |L′|} → {0, . . . , |L′|} is a permutation
on the selected locations to minimize the distance trav-
eled to visit all locations and come back to the origin
O. To solve this problem, we used open-source software
PyConcorde [29], wrapping the Concorde TSP solver [30].
Taking the π∗(c), the corresponding optimal value o(c) and
the length of the longer edge from O, lo(c), we compute



o′(c) = o(c) − lo(c) which is the length of the optimal open
path without return to the origin. We define

m(c) =

c∑
i=0

o′(i), (9)

as the cumulated cost over the individual scanning cycle. In
other words, visiting all its selected locations up to cycle c,
the camera would have to travel m(c) meters.

For our experiments, we chose the threshold on coverage
Th = .99, which we consider good enough for the daily
snapshot. This gives us two criteria:

CN = avgd,i>Sd
min { i | Cd(i) > Th }, (10)

MN = avgd,CNd>Sd
m

(CNd)
d , (11)

where CN is the minimal number of cycles (visits), and
MN is the number of meters needed to reach the coverage
of Th averaged over days in which the method was able to
reach Th given that each day there is a different number of
available windows for scanning.

Further, we compute the AUC for each combination of
areas ratio and day (a, d) defined as

AUC a,d =

∫
i

Cworst,(a,d)(i) di. (12)

To compare the overall performance of our methods, we
compare the AUC s they produce. We cannot compare the
values directly because they are strongly affected by the
parameter a—the more locations to visit in each cycle, the
faster the coverage—so we resort to non-parametric methods
based on ranking. As we have several methods and many
(a, d) pairs, we use the Quade statistical test for complete
block design studies [31], implementation of [32], correcting
the p-values for the problem of multiple comparisons with
Šidák’s correction [33]. We set the significance level to 5%.

D. Preliminary Experiments on the Search Paradigm

In the experiments described above, we assess data collec-
tion efficiency in terms of the number of collection cycles,
which corresponds to the inspection paradigm (recall Sec. II).
However, the search paradigm would be more appropriate if
we were to consider that the length of data collection time
is a random variable given by the duration of the queen’s
resting. Under this paradigm, collecting more data early is
more important than collecting all data in the shortest time,
which could be advantageous when the queen’s resting time
permits only partial completion of the task.

To assess the prospect of the search paradigm, we consider
an additional method of selecting the locations to visit based
on the GSP solution, obtained using the multi-start general-
ized variable neighborhood search (Ms-GVNS) metaheuris-
tic [34]. In the GSP [20], the locations are represented as
vertices in a complete graph, and each vertex i is weighted
according to the associated information gain ei. The GSP
aims to find:

π∗
GSP = argmin

π

|L′|∑
i=1

ei

i∑
k=1

dist(lπ(i−1), lπ(i)). (13)

The GSP-based method is evaluated in two sets of pre-
liminary experiments where we do not consider the effect
of the searching paradigm on the comb mapping but rather
how it would compare in the generated trajectories. These
experiments aim to show a clear distinction between the in-
spection and search paradigms using quantitative metrics that
could indicate in which situations to apply each paradigm
and the potential for improvement obtained by making that
choice. For this purpose, we utilize the sets of locations
selected by the WHyTened kMeans method over the course
of experiments from Sec. V-B, as we expected this method
to perform well based on our prior experience.

The first experiment tested the suboptimality of π∗
TSP

in terms of information collectible in the time (traveled
distance) needed to visit all locations in a potentially very
scattered selection L. In the second experiment, we look at
the potential gain of information along the path if optimizing
for the possibility of interruption. We ran both experiments
over the sets of locations selected by the WHyTened kMeans
method over the experiments from Section V-B as we ex-
pected it to perform well based on our previous work. The
first experiment was run for various a, the second only for
a = 1.

We set costGSP(j) to be the distance cumulated over
steps j and EGSP(d) =

∑
i,cost(i)<d ei to be the cumulated

information along distance traveled by π∗
GSP. To assess the

possible information to be gained by π∗
GSP at the same cost

o′ of π∗
TSP we compute the total information collected until

budget depletion as TEGSP = EGSP(o
′), and we report the

information gap as IG = (TEGSP − TETSP)/TETSP.
To assess the gain in case of interruptions, we compute the

information coverage as IC ∗(r) = E∗(r·o′)/E∗(cost∗(Nl)),
which represents the total information collected after travel-
ing portion r of TSP solution cost o′.

VI. RESULTS

Here, we show the results of our experiments. First,
we look at the overall coverage performance, then at the
time-based evaluation in terms of the necessary scans and
traversed distance. Finally, we show the results on the
possible improvement of the distance cost of the collecting
trajectories. Note that presented Fig. 4 and 5 show a gap at
a = .05 because none of the methods reached the required
Th = .99; the Random method had trouble even with more
locations allowed.

A. Coverage Comparison

Looking at the performance of the methods across all
cycles of all days and for all values of a, we compare the
values of AUC generated for all pairs (a, d). The results of
testing the rankings of the methods according to the AUC
criteria are given in Fig. 3. We show where the Quade test,
including Šidák’s correction, confirmed statistically signifi-
cant differences.

We see the uninformed methods performing worse than
the informed ones. Apart from WHyTened kMeans, all
methods outperform the Greedy approach. At side 0, the
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method to reach the coverage of C = .99 on each side
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reach the coverage of C = .99, given that for observation
mode, the data collection takes 30 s, for scanning mode 2 s,
per each visited location and the camera travels at the speed
of 1 cm s−1.

HyT X GMM proved to be statistically the best rank-
ing method; on side 1, it was not possible to or-
der Greedy, HistDayGrid, HyT X GMM, HyTted GMM,
WHyTe, time window GMM as the best ranking methods.

B. Covering Metrics Results

Figure 4 presents CN how many collection cycles and
MN how much traveled distance our methods needed on
average to achieve the coverage C = .99 for various values
of the allowed ratio of locations a. All results converge on
a = 1 as there is no longer any selection, and the methods
visit all locations.

As expected, the number of scans drops significantly with
how many locations the robot is allowed to visit and plateaus
around seven on side 0 and nine on side 1. The marginal
benefit of visiting more locations also diminishes, which
is caused by overlaps in the field of view of the camera
between locations. There are clear, substantial differences
between the uninformed methods and informed methods.
When specifically optimizing for the coverage, the methods
gain about 50% edge for a = .5.

The amount of traversed meters is less intuitive. Only
the Random method performs clearly worse as it selects
locations randomly scattered around the whole area, there-
fore having to traverse up to twice the distance. For the
lowest and highest a, there is almost no difference between
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Fig. 6: Preliminary results on selection of locations under
inspection (TSP) and searching paradigm (GSP). On the left,
we compare for each a the relative improvement of expected
information IG collected if the time budget would be given
by our TSP solution over selected locations L. On the right,
we compare information coverage IC as the proportion of
collected information to the distance traveled by our TSP
solution.

Sequential and informed methods; for the middle values, the
informed methods make better use of the overlapping views
and information redundancy.

For both metrics, the performance of the informed methods
is relatively similar. There is not a large practical difference
between greedy and predictive methods. That would indicate
that there is not a large benefit to be gained by the predictive
selection.

C. Real Time Results

To know the actual amount of time the robot needs to
achieve the C = .99 coverage, we used specific values from
our system and data from Fig. 4 to produce Fig. 5. The
camera moves 1 cm s−1, and we consider two modes of data
collection—observing and scanning. Observing mode stops
at each location for 30 s before moving on to the next one.
Scanning mode only takes one image, which results in an
overhead of about 2 s caused by the need for stabilization,
focusing, and exposition.

For the scanning mode, considering the data collection
time makes no real difference compared to the traversed
distance. Even on side 1 with 90 locations, the overhead
for a = 1 only makes 3min. The best methods take close to
an hour of operation time to construct the daily snapshot.

In the observation mode, the overheads are, however
substantial and dominate other effects. Even though the
number of scans necessary plateaus for the informed methods
after a = .5, the amount of time grows. In terms of time, the
fastest coverage would be achieved at only a = .1, taking
between 3 h to 4 h.

D. Potential Improvements in Location Selection

Assessing the suboptimality of our location selection com-
pared to the searching approach, the results in Fig. 6 (left)
show that within the same travel budget, the GSP solution
can collect substantially more relative expected information
for a < 50%, while for a > 50%, the reported gap is not
as prominent, usually less than 10%, and sometimes even
attains negative values.

Assessing the effect of a possible unpredictable interrup-
tion of the data collection cycle, the results in Fig. 6 (right)
show that the GSP-based approach, on average, can collect
more information up to almost 100% distance traversed by
the TSP-based solution. However, around that point, the TSP
solution becomes better because it is overall shorter, indi-
cating that the TSP approach is more suitable for complete
coverage, while the GSP approach is better when planning
is done on an unknown budget.

VII. DISCUSSION

In our experiments, informed methods proved to be an
improvement over the current uninformed approach across a
variety of covering metrics. For scanning mode, the improve-
ment of needed time is not so prominent because the time
of data collection is relatively small. However, once the data
collection at each location takes more time—the observation
mode—it becomes much more important to select locations
with high information gain.

It is, however, harder to distinguish between the informed
methods. In terms of the AUC, we see the predictive methods
performing statistically better than uninformed and Greedy.
This means that the MoDs developed for the human urban
environments were able to learn some of the dynamics of
the bee presence successfully. The small improvement in
informed methods can be caused by only relatively small
fluctuations in the number of bees in the hive. Nevertheless,
an example visualization of the second cycle in Fig. 1 shows
that the predictive method chose correctly the least bee-
populated locations to visit. This suggests, that MoDs are
gonna provide an edge for other applications in need of
prediction of the bee density.

One of the important results we see is the effect of the
areas ratio a on the speed of coverage and that always visiting
all locations is suboptimal. In terms of traveled distance,
there is a sweet spot of a = .5 for which the ratio of gained
information to the scatter of locations with high expected
information is the largest. With the current setting of the
system, scanning of the hive is done opportunistically when
the queen rests, and a full scan is done every time. In the
month-long dataset, the number of scans per day was, on
average, 25 on side 0 and 38 on side 1, but in extremes,
this went up to 56 and 112 scans in a day. Our results show
that using informed methods, we would need only about ten
scans, even with a = .5, to achieve appropriate coverage.
That is only about 20% of total collected data for the average
day on side 0 and 13% on side 1 (fewer scans and fewer
locations), which is a substantial improvement should the
robotic system be deployed in scale in the future.

We see that we were able to improve the effectiveness
of data collection in terms of the number of visits, which
is the dominant factor when the cost of data collection
dominates the cost of travel—in the considered observation
mode. However, for the scanning mode, the travel costs are
more important, so including these costs in the selection
of locations would likely allow for further improvements.
This is confirmed in the comparison to the GSP method,



which was more efficient in planning for the collection
of most expected information given the same budget. The
limitation of this result is that we only estimate the expected
information, and the collections of data are not independent
because of overlaps of the camera’s field-of-view.

VIII. CONCLUSION

Our robotic system observes a living honeybee colony over
long periods of time and balances data collection between
the queen and the rest of the colony. In preparation for
the new observing season, we studied the options for more
effective observations of the comb, which need to happen
daily and deal with occlusions by bees. We presented several
methods that consider the dynamics of bee presence and
can significantly lower the number of data-collecting cycles
compared to our current setup. This will allow us to improve
our system, lower the amount of low-information data, and
help with the design of a bio-hybrid system.

In the future, we would want to investigate in more
detail the capacities of our human-oriented MoDs to model
the presence of bees. Moreover, there are several possible
criteria for optimizing. We showed preliminary results on
the searching paradigm and prepared the ground for a more
thorough investigation of all options.
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