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Abstract— Despite the importance of honeybees as pollinators
for the entire ecosystem and their recent decline threatening
agricultural production, the dynamics of the living colony are
not well understood. In our EU H2020 RoboRoyale project, we
aim to support the pollination activity of the honeybees through
robots interacting with the core element of the honeybee
colony, the honeybee queen. In order to achieve that, we
need to understand how the honeybee queen behaves and
interacts with the surrounding worker bees. To gather the
necessary data, we observe the queen with a moving camera,
and occasionally, we instruct the system to perform selective
observations elsewhere. In this paper, we deal with the problem
of searching for the honeybee queen inside a living colony. We
demonstrate that combining spatio-temporal models of queen
presence with efficient search methods significantly decreases
the time required to find her. This will minimize the chance of
missing interesting data on the infrequent behaviors or queen-
worker interactions, leading to a better understanding of the
queen’s behavior over time. Moreover, a faster search for the
queen allows the robot to leave her more frequently and gather
more data in other areas of the honeybee colony.

I. INTRODUCTION

The advances in mechatronics, control and AI resulted

in robots capable to interact with animals in their natural

ecosystems [1], [2]. These robots can be used to support

nature conservation [3], monitoring [4]–[6], maintenance [3]

and even recovery of damaged ecosystems [7]. Deployment

of robots to support the ecosystems has the potential to

mitigate the negative impacts of the ongoing ecological

crisis [8], [9] on the environment and agricultural production.

In the European project “RoboRoyale” we work on es-

tablishing a biohybrid system where robots interact with a

honeybee queen in order to support the whole colony. For

this purpose, a robotic manipulator was designed, capable

of detailed observations of the insides of the hive using

a positionable camera. The system targets the observations

of the honeybee queen, marked with a fiducial marker [10]

similar to the one used in conventional beekeeping and the

captured high-detail imagery is used to extract the queen’s

behaviors.
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Fig. 1. In this work, we optimize the time it takes to locate the queen
after deployment for observations in different parts of the comb. During
regular operation of tracking the queen, the system is deployed to an
arbitrary location in the hive to observe other phenomena like the larvae
development. When the deployment is finished, a trajectory needs to be
planned to localize the queen again. We use short-term information about the
last known position (“recent model”, RM ) and long-term information from
past observations (“prior model”, PM ) to inform a searching algorithm.

However, as the queen is not an isolated agent, the state of

the whole colony, including the likes of nutrients, numbers

of eggs, and larvae, need to be understood as well to interpret

the data. Such observations are in the current version of

the system achieved by scanning the whole comb several

times per day and inspecting manually prespecified areas at

given times. Both comb scanning and inspections interrupt

the observation window and require a procedure to localize

her in order to recover the tracking. Currently, sequential

scanning of the whole comb is used.

In this paper, we investigate methods for more efficient

localization of the honeybee queen. We aim to reduce the

average time it takes to locate her by an intelligent search

algorithm using a combination of long-term models of the

queen’s typical presence and short-term information of her

last detection, as summarized in Fig. 1. We evaluate the pro-

posed approach on a month-long dataset of queen trajectories

in a living colony collected by the autonomous observation

unit during the last season.
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II. RELATED WORK

In order to formulate an intelligent algorithm for fast

localization of the queen in the hive, we need to solve

a general optimization problem of searching for randomly

distributed targets. However, for such a solution to be useful

in application, the algorithm needs to be provided with a

good estimate of the target’s distribution. It has been shown

that models of environmental dynamics can approximate

such distributions from past observations into the future and

improve the performance of robots using them.

A. Search-Related Combinatorial Optimization

In later sections, we formulate the task of finding the

optimal search path for locating the queen as the Graph

Search Problem (GSP), which generalizes the well-studied

Minimum Latency Problem (MLP) in the field of combi-

natorial optimization. Here, we provide background on the

solution methods employed for these problems.

The MLP aims to find a tour such that the average visiting

time of all vertices in the given complete graph is minimal.

Although the problem is known to be NP-hard [11], several

exact algorithms exist [12]–[14]. Additionally, integer linear

programming with branch-and-cut and branch-cut-and-price

approaches have been developed for the Time-Dependent

Travelling Salesman Problem, a generalization of both the

MLP and GSP [15]–[18]. However, these algorithms can only

optimally solve instances with up to 100 vertices.

Metaheuristics, which provide good quality solutions in a

reasonable time, appear to be more useful in practice. For

example, Salehipour et al. employ the Greedy Randomized

Adaptive Search Procedure (GRASP) for MLP and com-

pare the impact of the VNS procedure as a local search

phase with Variable Neighbourhood Descent (VND) [19].

Salehipour’s results were improved by [20], who proposed a

General Variable Neighborhood Search (GVNS). Even better

results were reported by [21], who proposed the GILS-

RVND, a simple multi-start heuristic combined with the

Iterated Local Search (ILS) procedure. Recently, Santana et

al. [22] improved GILS-RVND by means of data mining,

and Mikula and Kulich [23] proposed a Multi-start GVNS

(Ms-GVNS), which outperforms GILS-RVND within a strict

computational time budget ranging from 1 to 100 seconds.

The GSP, first studied in [24], generalizes the MLP by

assuming that each vertex has an assigned probability of

finding the object when visiting the vertex, and these proba-

bilities differ in general. Besides some theoretical results re-

garding approximation schemes presented in [25], no further

developments are present in the related literature. The only

exception is a tailored GRASP metaheuristic for the GSP

introduced in [26] and its extension for multiple agents [27].

B. Spatio-Temporal Models

Maps of Dynamics (MoD) [28] are internal representations

of dynamic patterns of a robot’s operational environment that

enable predicting the environmental state out of the robot’s

perceptual range [29]. Recent research showed the indispens-

ability of incorporating MoD into the autonomous robots’

Fig. 2. Construction of an observation hive, used in biology to study
honeybee behavior inside the colony, courtesy of [40]. Standardized combs
behind a glass panel allow for observation of a living colony with minimal
disturbance, typically conducted under deep red or near-infrared light. The
hive is connected to the outside by a plastic tube entrance.

task planning systems [30]–[33]. Although the problem of

environment changes was typically connected with robot

mapping and self-localisation [34], [35], MoDs were also

successfully applied to a robotic search task [36]. However,

the integration of MoD into the task planning system was

almost exclusively applied to human-designed and human-

populated environments [37]–[39].

In this work, we exploit spatio-temporal MoD that gener-

alise independent area-based observations to model only one

specific insect entity customs. Moreover, an integration of

MoD to enhance a decision-making process in the bio-hybrid

systems was never studied. For a higher conclusiveness, we

chose to evaluate a subset of simplified versions of previous

successful predictive maps defined and evaluated in [32].

III. PROBLEM

A typical hive consists of standardized combs—we use

420mm × 220mm dimensions—stacked on top of each

other, with a glass panel on the side to allow observations

inside a living colony, as shown in Figure 2. Despite being

indoors, the hive is connected to the outside via a plastic

tube to allow the bees to fly out.

In a previous version of an automated observational sys-

tem [41], four static cameras were watching the entire hive,

providing broad, low-detail observations. The system we use

here, is explicitly designed for very detailed observations

anywhere in the hive by a positionable camera. The camera

provides 1920 px× 1080 px images at 30Hz.

A. Scheduling Observations

The system is designed for the automation of long-term

biological observation. While primarily the system follows

the honeybee queen using the WhyCode fiducial marker [10]

placed on the queen’s abdomen, it is intended for complex



data collection of the whole colony. Apart from simple

scanning behavior, it is possible to manually schedule se-

lective data collection by specifying the target position and

duration of observation. This way, the system can produce,

for example, timelapse videos of larvae development by col-

lecting images in predefined intervals at locations preselected

by a biologist. Due to the high level of detail, it is only

possible to watch a small portion of the hive, which makes

measurements of various phenomena exclusive, requiring an

intelligent scheduling of the observations.

In the current setup, the implemented recovery behavior

searching for the queen performs a sequential sweep of the

entire comb. This is why it is currently inefficient to send

the camera away to observe for a long time. After leaving

the queen for a longer time, the queen could have moved

substantially far from its last known position to return to it.

Some portion of the time, the queen rests, so she does not

move from her last position at all, but she is active and can

travel far in the rest of the time. The longer observations

are scheduled, the higher the need for efficient searching

behavior.

B. Searching for the Queen

In this work, we formally define our task of searching for a

queen after observation by a tuple D = (t,pq,pd, d), where

t is the time of deployment, pq ∈ R
2 is the last known

position of the queen (also the position where the camera

starts its deployment), pd ∈ R
2 is the target position of

deployment for observation and d is its duration. Given D,

we want to find a sequence of camera positions throughout

the hive that lead to the fastest localization of the honeybee

queen. This corresponds to the problem of effective target

localization after scheduled observation.

We consider the manipulator to leave the queen at t, travel

at its given speed v to pd, and spend there time d. At time

s = ||pq − pd||/v + d, it starts searching for the queen and

travels the hive for up to 10min until the marker is well

detectable in the image.

The search at time s can be informed by two sources

of information, giving each potential location a weight rep-

resenting the likelihood of finding the queen. The first is

the recent knowledge of pq , the queen’s location at time t,
which we denote a recent model RM . The second source

of information can be long-term observations of the queen’s

behavior, which we refer to as a prior model PM . These two

sources are both relevant, but their relevance changes over

time, and combining them requires considering the passed

time s− t.

IV. METHODS

A. Informing the Search

A model to inform the search is a function f(t,p), which

gives the relative likelihood of the queen being at position p
at the time t. We consider two distinct models and their

combination in time. The first is the recent model RM ,

which represents a short-term memory of the last known

observation. The second is the model of long-term dynamics,

which we refer to as the prior model PM .

1) Recent Model: We define the recent model to be a

probability density function (pdf) of the displacement of the

queen for each value of passed time discretized to seconds,

RM (s,p) = pdf(s−t)(p− pq), (1)

where s is the time at the beginning of the search, p is the

queried position, and pq is the last known position of the

queen from time t.
In our work, we use the empirical estimate of RM on

the training data. For each second from 0min to 10min, we

compute the Gaussian kernel density estimate with band-

width set to 0.02m. We show the fitted model in Fig. 4.

2) Prior Models: To model the long-term dynamics of

the queen’s location, we employ a selection of simplified

MoD that were not developed for specific tasks or environ-

ments [32]. These spatio-temporal MoD cover discrete [42]

(HistDayGrid), temporalily continous [43] (FreMEnGrid),

spatially continuous [44] (time window GMM), and continu-

ous [45] (HyTted GMM, WHyTened kMeans) generalizations

of observed dynamics. Following the original paper, the

names are usually composed of a prefix specifying the fore-

casting method and a postfix specifying the spatial structure.

Chosen maps use three types of spatial structure—the Grid,

where the spatial component is decomposed into rectangular

grid cells, and the data-oriented spatial dividing, kMeans

and GMM, which split the space according to a clustering

of the observations. The forecasting methods are derived

from history knowledge aggregations [42] (Mean, HistDay),

spectral analysis of the time domain [43] (FreMEn), and

warped hypertime [46] (HyTted and WHyTened). There are

two exceptions: HyT X GMM that models temporal and spa-

tial dynamics independently and forecasts their combination,

and GMM that models only the spatial behaviour of the

queen.

Upon learning, every MoD gives us a prediction function

f of the likelihood of the queen’s location for a given time t
and positions p. Given a MoD method and a discretized set

of positions to evaluate the prediction for, we simply get

PM method(s,p) =
fmethod(s,p)∑
q
fmethod(s, q)

, (2)

which are the MoD predictions normalized over all the

available positions q.

3) Composed Model: The short-term information from

RM and long-term information from PM need to be com-

bined with respect to the time since the last observation,

as the RM deteriorates over time. Although for a different

purpose, previous works in MoDs have considered the decay

of short-term information to be exponential [47]. We also

adopt this idea and for switching between the RM and

PM we, therefore, employ an exponential function c(δ) =
exp(−λδ) weighting the passed time δ as

α = c(s− t), (3)

CM = α · RM + (1− α) · PM . (4)



For (s − t) → 0, the mixing parameter α → 1, preferring

the recent model RM , for (s − t) → ∞, the mixing

parameter α → 0, preferring the prior model PM . For

better interpretability, we reparametrize the function c from

λ to h according to λ = − log ( 12 )/h. We refer to h as

“recency” or “recency half-life” as it allows us to specify

the information decay by the time at which α reaches 0.5,

and the contribution of both models is the same.

B. Optimizing the Search Path

We approach the task of finding the optimal search path

for locating the honeybee queen by introducing the following

simplifying assumptions: during the search period, the queen

is considered static and located at one of a discrete set of

possible locations of the camera. To reduce the continuous

space of feasible camera positions to a graph, we adopt a

simple discretization to a regular grid whose cells form the

set of searched locations. Additionally, we assume that the

discrete probability distribution of finding the queen over

the set of locations is known. Then, the natural criterion

is to minimize the expected time to find the queen while

traveling along a path that visits (or ’searches’) all these

possible locations where the queen may be found. In general,

minimizing the expected completion time of a task aligns

with the search paradigm [48], in contrast to the inspection

paradigm, which aims to minimize the worst-case completion

time.

Based on the simplifying assumptions, we formulate the

following optimization problem. We posit the existence of a

static object of interest (the queen) located at an unknown

location Q (a random variable) among a discrete set of

locations V = {1, . . . , n}. The probability P (Q = i) that

the object is located at a particular location i ∈ V is known

and denoted as p(i), where
∑

i p(i) = 1. Our goal is to

minimize the expected time E[T |π] to find the object along

a path π : V 7→ V (a permutation of V ). Based on the

definition of expectation, we can express this criterion as:

E[T |π] =

n∑
i=1

p(π(i)) · δπ(i), (5)

where T is a random variable taking the value of time when

the object is found, and δπ(i) denotes the latency of arriving

at π(i), measured since initiating the search task. Given an

additional, fixed starting location π(0) = 0 and a travel time

t(j, k) from location j ∈ {0} ∪ V to location k ∈ V , the

latency δπ(i) can be defined as follows:

δπ(i) =

i∑
l=1

t(π(l − 1), π(l)). (6)

Combining Eq. (5) and Eq. (6), the optimal search path π⋆

can be expressed as:

π⋆ = argmin
π

n∑
i=1

p(π(i))

i∑
l=1

t(π(l − 1), π(l)). (7)

Finally, since the optimization result remains unaffected by

a constant factor that multiplies the optimization criterion,

Eq. (7) can be equivalently written as:

π⋆ = argmin
π

n∑
i=1

w(π(i))

i∑
l=1

t(π(l − 1), π(l)), (8)

where w(i) ∝ p(i) represents an unnormalized probability

mass of location i, also referred to as the weight of i. Eq. (8)

precisely describes the GSP, which we provide background

on in Sec. II-A.

In our original task of searching the honeybee queen, we

adopt a metaheuristic approach to solve instances of the

GSP. These instances are defined by the grid discretization

of the comb area, with each grid cell with coordinates q

representing a possible queen location i. The weights w(i)
assigned to these locations are determined by the respective

model, which predicts the likelihood of the queen’s presence,

e.g. if location i lies at coordinates q, the search at time

t using prior model PM would set w(i) = PM (t,q).
We estimate the travel time between locations based on a

constant-velocity assumption, calculated as the Euclidean

distance between the centers of the cells. Lastly, the initial

location π(0) is set to location l that corresponds to the

current position of the camera qt.

To solve the GSP instances, we employ the Ms-GVNS

metaheuristic [23]. Ms-GVNS is a restarting method that,

with each restart, generates a greedy solution. It then system-

atically switches between the VND local search method [49]

to find local optima with respect to several neighborhood

operators, and random perturbations with increasing intensity

to escape these optima and diversify the search for an optimal

solution. Specifically, it employs the standard improvement

operators 2opt, insert, or-opt2, or-opt3, and or-opt4 in VND

(in that order), and 4opt, 8opt, and 12opt (in increasing

intensity order) as random perturbations.

Ms-GVNS was originally designed for the MLP, which

aligns with the GSP where ∀i : wi = 1. In the experimen-

tal evaluation detailed in [23], it demonstrated exceptional

performance in solution quality compared to the reference

metaheuristic GILS-RVND [21] within constrained compu-

tational time limits (1 to 100 seconds) and for instances up to

size 1000. This is particularly appealing in our context, where

bigger time budgets for finding solutions are not anticipated.

To use the Ms-GVNS in this work, we adapt it for the

weighted version of the problem, defined as in Eq. (8), by

deriving efficient O(1) improvement computations for the

VND operators, similar to those described in [23].

V. EXPERIMENTS

To evaluate the ability of our proposed methods, we first

experiment with the setting of parameters of the GSP solver.

Then, we simulate the time it would take our methods to

locate the queen on a set of simulated deployment tasks cor-

responding to possible scheduled observations We generate

the testing scenarios from a real dataset from the testing setup

collected during the last observational season, 2023.
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Fig. 3. The mean relative AUC performance in information gathering
by the camera compared to discrete GSP solution for various settings for
the Ms-GVNS solver. On the left, we show how much the camera would
gather over setting the grid step to 1 cm and maximal runtime 0.1min.
Markers represent the sampled parameter combinations; the rest of the figure
is interpolated linearly. On the right, we show only the dependency of the
mean relative AUC only on the grid step with the corresponding 95%

confidence interval; the optimal setting seems to be the 4 cm.

A. Dataset

The data from first 20 days are used for the training

and the rest for testing, because the MoDs require long-

term observations and we need to keep the parts temporally

separated. To create the recent model RM , we randomly

generated 10 thousand continuous tracklets from the training

dataset. We generated 2 thousand random deployment tasks

Di to evaluate the proposed searching methods.

The tracking in the dataset is sometimes interrupted, or

the queen changes sides. We select Di so that pq is one

of the detected queen positions, deployment position pd

is selected uniformly in the hive area, the duration d is

selected uniformly from 0.1min to 30min. We also required

a 10min-long continuous detections to exist starting at time

s so that we could evaluate the planned trajectory of the

camera with the real position of the queen, given that the

success of the search is defined by localization in at most

10min.

B. Planning Parameters

To solve the graph search problem, it is necessary to

discretize the continuous space of the comb area and assign

weights to the set of vertices. The standard formulation (as

per Eq. (8)) considers the weights completely independent.

In our case, the vertices are assigned weights according to

the expected queen location; however, the camera’s field of

view always covers more locations at once, which violates

the assumption. The level to which it does so can be adjusted

by setting the coarseness of the discretized grid S. Further,

as the problem is complex, our solver is a heuristical one.

It generates its solution by incremental improvements to

an intermediate solution and, therefore, needs a stopping

condition set by the maximal runtime M . We expect the

maximal runtime to also depend on the grid spacing.

To test both parameters, we define pc(u) as the amount of

probability the camera collects at time u following a solution

π. We compute the solutions for each prior model’s first few

scenarios, randomizing the search’s origin and varying step
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Fig. 4. Empirical recency model RM , showing the cumulative density
function (CDF) of displacement of the queen from the last known location
||pq − p|| for several values of the passed time t.

size for grid definition and maximal time for stopping the

solver. That gives us the AUC of the cumulative reward as

AUCS,M =

∫ M

0

∫ t

0

pc(u) du dt. (9)

We expect that with higher maximal time, the solution would

be better, and we expect a sweet spot for the value of the grid

step, so we compute the relative AUCS,M/AUCminS,minM

and average it over the models.

C. Search Efficiency

To test the abilities of our methods, we compute the

solutions for all the scenarios and the time it would take

to locate the queen. As the baseline of the current setup, we

also include a model Sequential, that scans the comb from the

bottom to the top by rows in a snake-like fashion. To select

the recency parameter h appropriate for our data, we compute

the results for all h ∈ {5, 10, . . . , 30}min, together with pure

PM model (referred to as h = 0min) and investigate how

fast the information from the recent model RM deteriorates.

Having the best value for the recency, we look at the median

and average searching times for each method. We compare

them also statistically using the Quade statistical test for

complete block design studies [50], implementation of [51],

with Šidák’s correction [52] for multiple testing, setting the

significance level to 5%. Finally, we look at the effect of

deployment time in combination with the recency half-life

on the search times to inspect the deterioration of the short-

term information.

VI. RESULTS

A. Planning Parameters

To properly set up the Ms-GVNS solver for problem 7,

we had to select the coarseness of the discretized grid S and

the maximal runtime M . The values of relative improvement

in the AUC metric computed across all of the prior models

PM are shown in Fig. 3. We see that for the problems we

are solving, the maximal runtime M makes no substantial

difference to the mean improvement beyond the lowest tested
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Fig. 5. Mean search time as a function of recency parameters h for
different models of dynamics shown with 95% confidence interval. This
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setting M = 0.1 s. For further experiments, we take M = 1 s
as that presents a safe choice realistic to the operation of our

system where 1 s is anyway a cost under discernment.

The step in the discretization S, however, makes a great

difference, allowing the information collection to be more

than three times more effective. In the right panel, we look at

the detail of the dependence of the mean AUC improvement

on the grid step and see that up to 6 cm it rises. The values

of improvement for 4 cm and 6 cm are very simmilar. Given

its field of view, the camera sees about 7 cm in the vertical

axis; we choose to be on the safe side of not missing any

area and set S = 4 cm.

B. Empirical Recency Model RM

Figure 4 shows the empirical recency model RM created

on the tracklets of the training dataset. The distribution

manifests as bimodal, where the queen either rests in the

same small area or leaves and slowly gets quite far. This is

conditioned on the passed time t, where the longer since the

last observation, the more likely the queen has left. After

5min, there is about 25% chance of the queen being away

from pq .

C. Search Efficiency

1) Effects of Recency h: First, we test the effect of the

recency half-life h on the average search times. Figure 5

presents the results for a set of models selected for better

readability. All informed methods performed significantly

better than the baseline Sequential, which represents the

current setup of the system. All methods informed by a

prior model PM have qualitatively similar behavior, so we

selected two representatives with overall best and worst

performance—HyT X GMM and WHyTened kMeans.

The prior models, on their own, give worse search times

than the recent model. Once the short-term information is
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Fig. 6. The search times for each method with recency half-life h = 5min,
boxes show the interquartile range, white stripes the median, and red dots
correspond to the mean. Methods are ordered according to their average
search time with the percentage of successful searches shown next to their
name.
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Summary of Statistical Results on Domninance
between Methods

Fig. 7. DAG of statistically significant differences in the average search
time between individual methods according to the rank on corresponding
scenarios. An edge is drawn between two methods if the p-value corre-
sponding to the test of their difference is less than the set significance level
of 5%, and the edge cannot be removed by transitive reduction. For clarity,
we explicitly show only those p-values where the p ≥ 1×10−3. On the left,
we show the performance of prior models PM with no recent information,
including comparison with Recent Only and Sequential. On the right, with
the selected optimal recency parameter h = 5min.
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Fig. 8. Mean search time for the best performing model HyT X GMM as
a function of deployment duration and recency parameter h. On the left, we
give the plot of full interactions; on the right, we show only the mean search
time (with 95% confidence interval) for the previously selected h = 5 cm.
Up to 10min of deployment, we see that with the recency model RM the
method can find the queen on average close ≈ 1min, which probably is
caused by the queen not leaving its last location pq with the search time
being dominated by the time to return from the deployment position.

included, the average search time is improved for all the

methods, for most improving beyond the Recent Only model.

We see a minimum at h = 5min, which means that at 5min
of passed time, the search balances equally the prior model

PM and the recent model RM . Higher h then leads to a

slight worsening of the performance.

2) Search Times: Looking at the average search time

when h = 5min in Fig. 6, we see that the three

best-performing models both achieve much better perfor-

mance than baseline and Recent Only model, with the best

HyT X GMM improving by 68% and 22%, respectively.

Apart from the average case, our methods also achieve much

lower 3rd quartile. We also show that apart from differences

in search times, the methods have different success rates

ranging from 92% to 98%, and our best methods improve

the success rate, lowering the failure rate by 75%. If the

queen is not found in the time of 10min in the real system,

the search would be repeated, but the chances of not finding

her in a second run are naturally lower as well.

The results of testing the rankings of the methods accord-

ing to the search time across all of the testing scenarios are

given in Fig. 7. We show a diagram visualization of where the

testing, identified statistically significant differences. Meth-

ods that do not have a directed path between them were not

orderable.

In the left panel, we show the performance of the pure

models PM and RM ; on the right, we test the with the

h = 5min, which seems like the reasonable setting of the

recency half-life based on our results. When no recency is

used, the prior HyT X GMM and Recent Only dominated

all the models but could not be ordered between them-

selves. For combined models, we cannot significantly order

HyT X GMM and GMM as the difference in their means is

rather small (see Fig. 6), however the success rate is higher.

3) Interaction of Recency and Deployment Duration : The

longer the deployment, the less we expect the information

from the recent model to matter. Figure 8 shows the average

search time as a function of the deployment duration and its

interaction with the recency half-life. We see that specifically

for cases, when the deployment lasted under 10min, we our

methods achieved the average search times even under 1min
with the recent information properly included in the search,

which is likely due to the queen rarely leaving the original

position.

VII. CONCLUSION

Our robotic system allows for long-term observations of

the honeybee queen in a living colony. However, we want it

to perform other localized observations in the hive leading to

the need for fast relocalization of the queen. As the current

searching behavior is naı̈ve, we proposed and tested several

methods for informed searching using long-term models

of her behavior and short-term memory of her last known

location.

In our experiments, all of the methods of searching for

the queen using extra information were significantly better

than the sequential searching baseline in both the average

time and the success rate. We see that both short-term

and long-term information separately leads to improvements.

Usefullness of the long-term prediction based on periodical

processes implies that the queen exhibits sorts of repetitive

behavior. When combining the information from PM and

RM , we found the recency half-life of 5min leads to the

best results—we were able to achieve 68% search time

improvement over the baseline. Given the tested deployment

durations of up to 30min, we conclude that the optimal

recovery path can be formed by an intelligent path planning

algorithm that takes into account the last known position of

the queen as well as her usual locations at a given time.

These results allow us to substantially improve our system

for the next season, enabling us to capture a higher amount

of extra observations while reducing the risk of missing out

on rare queen activities and behaviors. This brings us closer

to the biohybrid system integrated into the living ecosystem.
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