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ABSTRACT
This paper proposes a new method for the full 6 degrees of free-
dom pose estimation of a circular fiducial marker. This circular
black-and-white planar marker provides a unique and versatile
identification of individual markers while maintaining a real-time
detection. Such a marker and the vision localisation system based
on it is suitable for both external and self-localisation. Together
with an off-the-shelf camera, the marker aims to provide a sufficient
pose estimation accuracy to substitute the current high-end locali-
sation systems. In order to assess the performance of our proposed
marker system, we evaluate its capabilities against the current state-
of-the-art methods in terms of their ability to estimate the 2D and
3D positions. For such purpose, a real-world dataset, inspired by
typical applications in mobile and swarm robotics, was collected as
the performance under the real conditions provides better insights
into the method’s potential than an artificially simulated environ-
ment. The experiments performed show that the method presented
here achieved three times the accuracy of the marker it was derived
from.
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1 INTRODUCTION

(a) WhyCon (b) WhyCode

Figure 1: Fiducialmarker pose estimation ambiguity. In blue
and greeen, there are two possible position candidates. The
red and black dots are the perspective centers of the white
inner and overall segments respectively.

The field of robotics has undergone a significant expansion, and
nowadays the robots can be found in almost every area of our lives.
The broad range of possible robotic deployments would not be
possible without the neverending development of the hardware,
which is smaller and more versatile every few years. With changes
in the robotic platforms, the necessary control procedures have
to adjust accordingly to whether we operate a heavy-machinery
soldering robot or deploy a service robot interacting with people
and its surroundings. Even though the overall dream is to achieve
full autonomy and self-sustainable control, the industry is far from
it. The robots are still not easily accepted by society [15], and when
a disturbance in their behaviour occurs, they are considered non-
functional. Therefore, their activities are usually restricted to a safe
and consistent environment.

One of the most important abilities of mobile robots is to find
and follow a path to achieve a given goal. Thus, navigation and
localisation within an environment is essential to completing such
tasks correctly. Wrong estimation of the robot’s state might mis-
lead the navigation and cause improper assumptions about the
surroundings resulting in even damaging itself or others. In order
to avoid undefined behaviour, the robots have to rely extensively
on the accuracy of the inputs from sensors.

https://doi.org/10.1145/3477314.3507043
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The robots are usually equipped with vison sensors measuring
various parts of the light spectrum providing projections of the
space to observe the environment. The most common sensor is an
RGB camera, which became more popular for labelling, object de-
tection, and classification, especially with the rise of convolutional
neural networks. However, one does not have to always turn to a
higher abstraction level of the image frame because plenty of ma-
chine vision techniques have been developed since the beginning
of digital image capture, projective geometry, and photogrammetry.
In the image scene, one can equally detect important groups of
pixels, patterns, landmarks, and shapes and calculate the mutual
relations within each other or the camera. To ease the process of
visual localisation, one can enrich the scene by simple artificial
unique patterns, fiducial markers, which have predetermined char-
acteristics allowing simple detection and pose estimation. Hand in
hand with the spread of robotics, the applications of the fiducials
evolve mainly originating as support for augmented reality, they
became a reliable source of position information used in multi-robot
and swarm robotics [29, 30, 32]. They can be even used for the eval-
uation of robotic experiments where they can provide the ground
truth [1, 3, 5, 26]. The main advantage of the fiducials is undoubt-
edly their extremely low cost and the need for only a calibrated
camera.

The markers are not all-saving because everything based on
measurements and sensors is imperfect. There are many aspects
which can decrease the performance. The maximum resolution
restricts the information from a camera, and the more challenging
the light conditions are, the more noise and possible image artefacts
occur. One must also consider the materials used to produce the
markers because the reflection and the colour rendering might
cause false segmentation or classification. Therefore, it is necessary
to study how the methods work and make them precise and robust
to become a reliable and trustworthy source for robot localisation.

In this paper, we present an enhanced marker localisation system
capable of the full 6 DOF pose estimation based on the original
circular black-and-white fiducial marker WhyCon and WhyCode,
which feature real-time performance, detection robustness and ef-
fective encoding of unique identification [18, 20, 21]. Our proposed
marker extends those systems with previously unaddressed solving
of ambiguity in the pose estimation, see Figure 1. We collected
a real-world robotic dataset representing a typical application of
fiducial markers in swarm robotics. Then, we evaluated our new
method together with the most popular state-of-the-art methods on
the dataset to show it achieves comparable accuracy while keeping
previously declared computational effectiveness.

2 RELATEDWORK
The observable environment can be enhanced by artificial objects,
fiducial markers, which have such properties that they can be used
as reference points to support robotic localisation and navigation.
Those artefacts can be relied on and incorporated in demanding
scenarios of ego-localisation and external localisation. Even though
the fiducials can be of any shape and colour, the most popular
are passive planar markers which have apriori known geometric
characteristics and simple colours, see Figure 2. Therefore, various
computer vision methods can detect the markers and even estimate

(a) WhyCon (b) WhyCode (c) ArUco (d) Apriltag

Figure 2: The most popular fiducial markers currently used
in the mobile and swarm robotics applications.

their position and orientation in space. The planarity increases
the complexity for pose estimation; however, it widely broadens
the possible applications as the markers can be placed on basically
anything. Applications supporting robot motion or localisation can
be found in [14] while the deployment in autonomous vehicles is
thoroughly examined in [16].

AprilTag is a black-and-white square marker with a 2D binary
code inside. The marker is able to estimate the full 6 DOF and
unique identification [27]. The detection phase starts with binaris-
ing the image and extracting all lines; then, the lines are filtered,
so only such enclosing and forming a four-corner object remains.
This initial phase produces a high number of false positives and
a low amount of false negatives, which might be beneficial in not
leaving any marker behind. Then, the line batches are tested to
satisfy allowed pattern characteristics involving the maximum cor-
ner angle or enclosed area size. The inside of the marker is later
sampled by a grid corresponding to the chosen coding size of the
identification matrix. The ID encoding is based on lexicographical
binary code, which offers variable adjustment of false-positive rate
together with the scalable amount of patterns. Markers can be de-
tected and identified even when slightly covered, but they have to
be generated with an appropriately robust coding size. AprilTag
has been extended [19] to support more shapes and even allow
custom content within the marker that is not related to detection
nor identification.

ArUco represents another fiducial based on the square shape,
which stores the identification information within a binary ma-
trix [13]. The method processes the image similar to AprilTag, and
so it starts with binarising the image where it searches marker
contours with an edge detector. Then, it proceeds with the iden-
tification matrix extraction for marker identification. Contrary to
AprilTag, the marker does not interpolate the found lines as much
to form enclosed shapes; therefore, ArUco is less resistant to occlu-
sion. The suggested approach uses a marker board occupied with
many redundant markers to provide an alternative foundation for
the pose estimation instead of the occluded markers. More recently
introduced improvements in ArUco [28] increases the detection
speed by considering temporal information about marker position
and size; thus, faster line segmentation can be applied. However,
the tracking is only beneficial in a continuous video stream, as, in
the case of individual image evaluation, there would not be the
possibility to reuse the previous parameters. The unstable detec-
tion time of the square-based markers is one of the deficiencies
described in [16] because it might hold back the whole dependent
processing pipeline.
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WhyCon is a real-time circular fiducial marker consisting of
two concentric circles of known parameters [18]. The outer circle is
black, and the inner one is white. They share a common centre, and
their diameters are known in advance. The method can estimate
the marker’s 5 DOF as the missing degree of freedom is the rotation
around the surface normal. Such capability of pose estimation is
especially useful in applications where only the 3D position is
required and not the orientation. WhyCon can perform detection
and tracking of hundreds of markers within tens of milliseconds
while achieving accuracy in the order of a couple millimetres. The
core of the detection is based on on-demand thresholding and local
flood fill segmentation. Within a series of segment verification tests,
the pattern characteristics are calculated on the fly and passed to
construct the conic section, which is used to pose estimation. The
marker excels in the computational efficiency and the low amount
of required memory. The solution of the lacking ability to determine
the complete orientation or identification has been proposed by
derived markers, WhyCode, and SwarmCon.

WhyCodemarker is a descendant of theWhyCon system,which
relies on the same core algorithm while extending the system with
versatile identification [20, 21]. It shares the same thresholding,
segmentation, and projection model; thus, it achieves comparable
performance. WhyCode introduces uniquely identifiable encoding,
which helps with the missing angle estimation as in WhyCon. The
used encoding allows scalable and variable unique marker genera-
tion with a binary code between the white and black segments of
the overall pattern. The binary code represents mathematical Neck-
laces that are invariant to rotation; therefore, they can be rotated
until reaching the minimum. The rotation required is equivalent to
the sought rotation around the marker’s surface normal vector. The
identification phase affects the evaluation time insignificantly, and
so, the fiducial remains as computationally efficient as the original
marker while it adds the identification and 3D orientation estima-
tion. Nevertheless, the marker is restricted to shorter distances and
smaller angles because the binary code has to be appropriately
visible to identify.

SwarmCon represents a different evolution branch of the Why-
Con marker, which instead of introducing new features, only modi-
fies the already existing ones [3]. Therefore, it again relies on the
internals and performance of WhyCon, but enriches the marker
with a distinguishable identification system and planar orientation.
The significant difference is the change from concentric circles to
centre-offset ellipses. The offset and individual shape of the ellipses
matter because based on the mutual size and (co-)vertices of both
ellipses, the ID is encoded. Also, considering the slight offset of the
centres, the base orientation can be established and later on esti-
mate the orientation as the rotation angle of the (co-)vertices. The
main disadvantage is that it can be deployed only in planar environ-
ments because pose estimation of an ellipse at a general pose leads
to many ambiguous solutions. SwarmCon offers an application-
dependent function of creating and transforming the results into a
custom swarm arena frame.

Many other planar black-and-white fiducial markers have been
presented with various capabilities; however, their area of use has
been oriented towards augmented reality. They were introduced
in the early beginning of the camera vision techniques for localisa-
tion and tracking. The foundational and influential square passive

marker was ARToolKit [17], focused on the AR tracking, which was
mainly used for the possibility to uniquely identify the markers
with only a little focus on the actual quality of the pose estimation.
The later evolved markers ARTag [12] and ARToolKit+ [31] further
improved the performance but were still more oriented towards
augmented reality than fulfilling the needs of the robotics commu-
nity in the estimation accuracy and computational requirements.
However, with the increase in computational power of robotic plat-
forms and camera resolution, the fiducial markers evolved into
highly complex shapes and colours capable of representing plenty
of information bits [6–8, 10, 19].

Recently introduced methods extend the incorporation of the
fiducials even more as they combine the natural and artificial land-
mark localisation systems to overcome the volatility and repetitions
of natural landmarks, which are often experienced by most of the
visual SLAMs [22, 23]. The authors of UcoSLAM and SPM-SLAM
use a square-based marker as a reliable artificial landmark to sup-
port the localisation and map building in repetitive environments.
The systems can use only the marker, keypoint features, or a com-
bination of them; thus, it maintains the versatility of the traditional
SLAM approaches. The marker supports the determination of the
map scale as its dimensions are a priory known. In terms of the
features, the methods are designed to incorporate any type of image
descriptors, which provide enough reliable information.

3 FIDUCIAL ESTIMATION METHOD
In this section, we introduce the enhanced fiducial marker localisa-
tion system based on the WhyCon and WhyCode fiducial markers,
which are capable of online tracking, robustness to motion blur and
changing light condition, and real-time detection performance. The
markers have been deployed in wide range of scenarios involving
multi-robot formation synchronization, human-to-robot interation,
and low-cost ground-truth of robotic experimets [3, 24, 26, 32].

The whole WhyCon family of related markers share the same
detection core as presented in detail in [18], meaning close to
milimetre accuracy and the ability to process many markers in
real-time. WhyCon and the further evolved WhyCode fiducials are
open-source vision-based localisation systems with high accuracy
which needs only a simple web camera to detect and localise up to
thousands of markers per image frame [11, 21]. The fiducials bene-
fit from computational efficiency compared to Apriltag or ArUco,
which allows them to be use even in power-restricted robotic plat-
forms [21]. Flood-fill segmentation, cascaded tests with increasing
complexity and on-demand thresholding results in fast detection of
the circular pattern. The simple segments are tested for complying
with the sought geometric properties and they are rejected the first
time they fail. The properties are recorded for each marker and
reused for later searches in a new frame as the marker is expected
not to displace in the image drastically; and thus, it allows fast
tracking while reducing the amount of segments and parameters
to be processed.

The authors in [21] added to the previous system the versatile bi-
nary encoding to form uniquely indetifiable markers. The encoding
is on top it also invariant to rotation; and so, it is possible to recover
the rotation around the surface normal. The place for the newly
used marker ID is in between the black and white circles where
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(a) 𝜃 = [0,−0.3, 0.5]rad (b) 𝜃 = [0, 0.3,−0.5]rad

Figure 3: WhyCon pose ambiguity. In blue and greeen, there
are two possible position candidates. Both markers are at
exact opposite orientation.

we can find the circular Manchester-encoded binary Necklaces [9],
resembling teeth. Thanks to the properties of the Necklace code,
we can read the circular binary code from any starting point; and
then only rotate to the right to settle with on smallest value. The
amount of rotations neccessary estimates the rotation around the
surface normal.

Due to the nature of the encountered marker applications, there
was no necessity to fully deal with the 6 DOF pose estimation. The
typical required usage was to estimate the planar 2D position in
case of swarms, obtain the tilt of the marker’s normal, or identify
individual markers. However, as there was no need for 3D orien-
tation, there is an unaddressed instability in the pose estimation.
Tracking down the source of the instability, one notices the un-
solved process of choosing the correct pose solution as there are
always two position vectors and normal vectors to choose from.
Then, an arbitrary pair of vectors was outputed and considered as
the correct estimation. It causes only relatively small difference in
position precition, but a major error in an orientation. The missing
features have been thoroughly addressed by [16].

3.1 Addressing ambiguity of solutions
Once the detected and verified image segment achieves the end of
the pattern test cascade, it is passed to the shared pose estimation
core. The projective center of the sought marker can be find easily
as an arithmetic mean of all the coordinates of the segment pixels.
Then, we construct the covariance matric and decompose it to the
eigenvalues and eigenvectors to obtain the ellipse description of
the projected circle. The (co-)vertices and center are transformed
to the standard canonical camera coordinates, which later allow
us to formulate the ellipse as a conic section where all the ellipse
points have to satisfy X𝑇QX = 0, where Q is the conic section of
the segment border and X = (𝑢 ′𝑣 ′1)𝑇 is an ellipse point in the
canonical form and homogeneous coordinates.

The conic is then decomposed to calculate the surface normal n
and position of the marker x as thoroughly explained [21, 33]

x = 𝑠3
𝑟

√
−𝜆0𝜆2

©«𝑠1𝜆2q0
√

𝜆0 − 𝜆1
𝜆0 − 𝜆2

+ 𝑠2𝜆0q2

√
𝜆1 − 𝜆2
𝜆0 − 𝜆2

ª®¬ (1)

n = 𝑠1𝜆2q0

√
𝜆0 − 𝜆1
𝜆0 − 𝜆2

+ 𝑠2𝜆0q2

√
𝜆1 − 𝜆2
𝜆0 − 𝜆2
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where 𝑟 is the outer circle radius, eigenvalue analysis of Q yeilds
eigenvalues 𝜆0 ≥ 𝜆1 > 0 > 𝜆2 and their respective normalised
eigenvectors q0, q1, q2, and 𝑠1, 𝑠2, 𝑠3 are unknown signs.

We can then propose restrictions on the choice of the undeter-
mined signes because the fiducial is detected if and only if it is
placed in front of the camera. Similarly, the surface normal vector
have to face towards the camera. So, the constrains can be expressed
as below (

0 0 1
)
n < 0 (3)(

0 0 1
)
x > 0 (4)

The inequalities reduces the uncertainty to only one unknown
sign which yields two possible solutions x1, x2 and n1, n2. We do
not consider the special case when there is only one solution in
case of 𝜆0 = 𝜆1. Here comes the unsolved ambiguity as only the
restriction on the position is applied, which actually results in even
more arbitrary normal vectors. Therefore, one has to use look for
supporting information to choose the proper solution as in [33],
where the authors used an auxiliary sensor. However, we can find
the neccessary missing information within the markers, but as
WhyCon and WhyCode have quite different structer, each marker
requires an individual approach as described below.

3.1.1 WhyCon’s solution. WhyCon marker are just two concentric
black andwhite circles, and the concentricity is the actual additional
information we can benefit from. Currently, during the cascade of
characteristics tests, we segment also the inner white area and
together with the black ellipse the parameters are calculated. Then,
only the overall undiferentiated segment is passed to the pose
estimation procedure while the inner circle is examined just for
verification of the elliptical nature of the segment like the area
ratio of the segments, or the radii ratio. All the already computed
descriptions of the white circle is then not used at all.

The white segment is the key to the resolution because suddenly
there are two tightly related sources of the ellipse projection and
perspective. One can observe that the perspective has less influence
on smaller objects than on larger. So, we can assume the perspective
center of the white circle will not shift away from the projected
center of the black’s one. Together with the cocentricity of the
two circles, we can understand the mentioned white center as an
approximation of the real projected common center. The ambigu-
ity decition criterion is then the distance between the individual
solution candidates to the white center. We at first transform the
position vector from the camera coordinates back to the image
coordinates which gives us two points equally separated from the
overall center. Then, the sought correct vector is the closer one to
the white center.

In Figure 3, we can examine the ambiguity decision introduced
above. Both figures are related throught the third undetermined
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(a) 𝜃 = [0,−0.3, 0.5]rad (b) 𝜃 = [0, 0.3,−0.5]rad

Figure 4: WhyCode pose ambiguity. In blue and greeen,
there are two possible position candidates. Bothmarkers are
at exact opposite orientation.

sign mentioned in the equations for the calculation of position and
normal vectors. The markers poses differ only in the orientation;
and thus, we can decide on the correct solution base on the white
inner circle.

3.1.2 WhyCode’s solution. WhyCode is structurally differentwhich
makes the ambiguity decision more difficult. Also, the choice of the
correct solution is tightly connected to the correct identification.
The white inner area cannot be exploited the same because of the
binary encoding in between the circles which results in an uneven
and asymmetrical segments with different centers compared to a
simple circle. Thus, it can be only used in the parameter validaion
during the detection phase. The effect is especially noticeable when
a low number of bits is encoded because the white teeth are larger
and shift the averaged center more to towards them. However,
when the number of encoded bits is high enough or the marker is
observed under particular angle, the shifting effect of the dominant
white teeth is weaker. The strightforward attempt of the solution
would be to only use more encoding bits, but such approach would
decrease the current detection range and robustness to camera
imperfections.

The circular code can be analyzed for the ambiguity decision
because the detection pipeline has to process it anyway. The ex-
traction of the binary code starts with sampling around the marker
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Figure 5: Tresholded brightness signals obtained when sam-
pling the marker in Figure 4. The green signal shows the
shifted and inaccurate sampling while the blue one is the
correct binary signal.

perspective center obtaining a brightness signal. The authors of
WhyCode firstly smoothed out the gradient to equalise the signal;
and then, the position with the highest brightness is found and
considered as the approximated center of a white tooth. Then, the
signal is resampled and thresholded with tooth-wide step begin-
ning from the found point to obtain the binary code. This process
is actually one of the identification flaws as the strongest point
can be found almost anywhere along the signal depending on the
illumination. Therefore, the resulting binary code can be misaligned
with the original signal, so completely wrong.

The described drawback has a solution in a different analysis of
the brightness signal. The signal can be binarised right after sam-
pling it with the threshold of the overall average value. Teeth edges
are then found easily and converted into the Manchester-encoded
Necklace code. This change in decoding decreases the ability to
handle significant light changes; however, it highly increases the
identification reliability.

Once the decoding procedure is improved, we can used it in
ambiguity decition phase. Similarly to WhyCon approach, both
solution pairs are estimated and then reprojected into the original
pixel frame. Then, we continue with identification of the circu-
lar code as we have just described above; thus, we will have two
binary brightness signals. We assume there will be a noticeable
deformation of teeth within the signal connected to the wrong
overall projected center; because, if the signal had been measured
based on the correct center, the black and white teeth would have
the same or doubled size. Based on the above, we can calculate the
variance of the teeth position on the sampling rig. The solution
tight to the projected center with lower variance can be assumed
to be the correct pose estimation. However, this decision approach
complicates the detection process by doubling the identification
step and calculating the variance statistics. On the other hand, the
real-time performance has not been changed insignificantly.

Visualizing the ambiguity pair, see Figure 4, we can immedeately
judge which solution is the correct one; even though, the markers
face oposite directions. Both sampling circles are drawn to demon-
strate the dependency of the identification on choosing proper
solution. The described decision based on binarized brightness sig-
nal of marker in Figure 4b is presented in Figure 5

4 DATASETS
To compare the newly presented fiducial marker method with
the state-of-the-art fiducials, they were evaluated on a real-world
dataset. All the markers achieve up to a few millimetres accuracy,
and some of them were primarily designed to provide ground truth
for mobile robot experiments. The methods were evaluated on a
real-world dataset to demonstrate their actual performance under
naturally occurring noise and imperfect image capturing process.

The real-world dataset represents the external localisation ap-
plication of the markers in swarm robotics, providing a low-cost
ground-truth system. This application of the fiducials is popu-
lar [4, 24, 25] as the swarms can then operate in various conditions
without the need for setting up complex localisation systems of
multiple cameras and synchronisation units. The critical aspect is
the usage of infrared light emitters and receivers within the swarm
community as an essential means of communication among the



SAC ’22, April 25–29, 2022, Virtual Event, Jiří Ulrich, Ahmad Alsayed, Farshad Arvin, and Tomáš Krajník

Figure 6: Image frame from the real-world dataset display-
ing the three robots with marker boards on top and another
four marker boards in the corners.

nearby robots. However, the high-end motion capture systems in-
terfere with those sensors and restrict them as the systems are
primarily based on markers reflecting or emitting infrared light [3].
Therefore, in many applications, it is favourable to deploy those
passive visual fiducials.

The swarm arena, see Figure 6, in the dataset is of rectangular
proportions with sides of two and three meters. It is captured by
an off-the-shelf USB camera with low lens distortion and it is po-
sitioned approximately three meters above the arena. The video
stream has a resolution of 1920× 1080 pixels and a frame rate of ap-
proximately 30 frames per second with occasional frame dropping
while recording the stream. In order to obtain the ground-truth
measurements, we decided to use the Vicon localisation and motion
capture system, providing a submillimeter resolution.

The recorded data consists of pseudorandomised robot move-
ments. There are three robots moving to cover most of the arena,
and there are four stationary robots in each corner, providing a
reference frame for individual fiducial markers. The robots are
equipped with a board on top with fiducials, AprilTag, ArUco, and
our proposed marker. All the markers have the same size of 8.4 cm
and have been generated with their reasonably small sets of IDs.
Thus, ArUco binary matrix IDs are from the 4 × 4 dictionary, Why-
Code markers have 8-bit encoding, and AprilTag identifies markers
with a 16ℎ5 ID set. The used swarm robotic platform is MONA [2]
as it is a small open-source, open-hardware, and affordable plat-
form for research and education. It is based on the microcontroller
ATmega 328, which is the same as in Arduino Mini/Pro; thus, there
is a large compatibility of libraries and sensors.

The total dataset length is a little over four minutes consisting
of 7297 image frames and 60099 Vicon measurements. The Vicon
system, which measures the ground truth, provides measurements
at a higher frequency, approximately eight times more than the
camera frame rate. High frequency data is a feature shared among
high precision systems; therefore, we first had to match the ground
truth with the frames. To synchronise the high-frequency data with
the video, we used the beginning and the end of the movements
of the robots as key points which are straightforward to find in

both data streams. By aligning the beginning and the end of the
data, we iterated over the video frames and assigned them the
closest Vicon measurements. In order to make the data comparable,
we also have to reduce the number of samples, so there will be
corresponding pairs for each video and Vicon frame resulting in
5716 frames forming approximately three minutes.

5 EXPERIMENTS
To assess the newly presented fiducial marker performace, we eval-
uate the position estimation accuracy on the real-world dataset.
Under real-world conditions, most of cameras and any sensors suffer
from noise and a particular deformation of the sensed data. There-
fore, we thoroughly calibrated the camera to obtain the intrinsic
camera matrix and also the rectification coefficients for the plumb
bob distortion camera model. The calibration was estimated using
the widely known OpenCV calibration tools. In the dataset, there
also occur another common phenomenon in the image process-
ing, the motion blur, which is caused by fast moving and spinning
robots. Thus, tested methods are evaluated on image frames which
aim to reflect the real conditions in robotics applications. Although,
one could only test the fiducials in an artificial simulator, it would
not provide reliably transferable results in practice.

We propose the criteria below to compare the results generated
by the methods. There are two main use cases of the fiducials
applications, the first one is the general full pose estimation in
3D, and the second is only considering the 2D planar position.
The choice is based on real robotic and experiment-evaluation
applications. The method’s application is an external localisation of
moving robots because the fiducials can serve as an alternative to
the expensive motion tracking systems. The tests were evaluated
on an identical video stream with a known camera matrix and
distortion parameters. We compare the resulting marker errors to
see if the difference is statistically significant by testing them with
the Student’s t-test. The confidence level was set to five percent
through all evaluations. During all t-test evaluations the p-values
were strictly close to zero.

5.1 General 3D pose estimation
This first test aimed to evaluate and present the ability of the fidu-
cials to precisely estimate the full 6 DOF. We measured the position
estimation errors and expresed them as a histogram, see Figure 7.
In Table 1, we extracted the key accuracy indicators, which describe
the error distribution. Evaluating the results, the performance of
individual markers is straightforward and they significantly dif-
fer from each other. The marker with highest accuracy is ArUco
reaching an average error below 17 millimeters. Comparing our
marker with AprilTag, we managed to outperform it and achieve a
lower error. Based on the error evolution, one could suggest that
our error appears to be bimodal and could probably be improved in
a future investigation. Nevertheless, our position estimation error
is comparable and lower than the state-of-the-art method.

5.2 Planar 2D pose estimation
The following test examines the error of planar pose estimation as
it is one of the most popular applications in swarm robotics. The
results vary from the previous evaluation because our marker can
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AprilTag ArUco Proposed marker WhyCode2D 3D
Mean 35.53 17.26 18.68 31.43 75.44
Median 35.35 17.45 18.98 32.61 85.22
Std. dev. 11.56 7.66 6.15 12.81 21.96

Table 1: Position estimation error [mm]

Marker Time per image [ms] Speedup [%]
AprilTag 30.3 N/A
ArUco 30.2 0.2
Proposed marker 0.9 3465.4

Table 2: Comparison of the execution time of the compared
methods. The speedup is relative to the AprilTag

use and benefit from the information whether it estimates only
the planar pose or the general space configuration. The error char-
acteristics are in Table 1 and for the histogram vizualisation see
Figure 7. We can immediately conclude that our method provided
significantly improved results in the 2D case compared to the 3D.
The improvement in the average position error is approximately 18
millimiteres and moves our marker closer to ArUco’s performance.
Together with the lower mean error, we can notice the error evo-
lution is suddenly closer to unimodal and the error distribution
parameters improved, but after detailed evaluation, the error is
slightly bimodal. The reason might be still not perfect ambiguity
resolution. However, the ordering of the fiducials based on accuracy
remains the same, but our marker now became comparable with
ArUco instead of AprilTag.

5.3 Execution time
In order to demonstrate that the improvements did not cause a
major bottleneck in the performance of our proposed marker, we
measured the execution time. We let our marker and the state-
of-the-art markers run over the whole dataset, containing 7297
images and measured the time required by the appropriate method
entry point. In terms of the hardware used, we evaluated this test
on a mobile laptop with Intel Core i7-8550U processor and 16GB
of system memory. The resulting performance is summarised in
Table 2. Our proposed marker maintains its significant performance
based on the measured execution time.

6 CONCLUSION
This paper presented a new fiducial marker localisation method
capable of real-time performance, unique identification, and the
full 6 DOF estimation. The system is based on the widely used
methodWhyCode, a black-and-white roundel marker with a binary
Necklace-based ID. The original system is extended with steps to re-
solve previously unaddressed ambiguity in position and orientation
estimation; because otherwise, the system was highly unreliable
and produced inconsistent results. The extension addresses even
the problematic identification of unique markers and the related
rotation estimation around the marker’s surface normal.
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Figure 7: Position error estimation distribution

The introduced novelty is the ambiguity decision process when
estimating the two possible poses and testing them for the sought
pattern. Unfortunately, the same approach could not be used for
both foundational fiducials, WhyCon and WhyCode. The new de-
cision criteria allow the marker system to estimate the full 6 DOF
because it provides more reliable and stable results compared to an
arbitrary solution. In order to verify our assumptions, we recorded
and evaluated our method on a real-world dataset representing a
typical application in the field of swarm and mobile robotics. The
fiducial markers accuracy was tested against the ground-truth gen-
erated by high-performance Vicon motion and localisation system.

We compared the capabilities of the methods with the most popu-
lar state-of-the-art methods in two different scenarios. Considering
the outcome, we showed our fiducial marker achieves a comparable
performance while maintaining the aspects of the original markers,
mainly the real-time processing efficiency. The results demonstrate
the method achieved three times the accuracy of the original Why-
Code and it outperformed AprilTag in both test cases, while ArUco
sets the next accuracy goal for us.

In future works, one could incorporate a different ellipse segmen-
tation method instead of flood-fill. Thus, the entire image frame
would be processed contrary to only tracking given markers. The
next aspect to further consider is to improve the identification, so
one could choose whether to output even uncertain estimation to
maintain the continuity in measurements.
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